File size: 18,335 Bytes
37fc0f3
 
 
8116b21
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8116b21
 
 
 
 
b1878ce
 
8116b21
37fc0f3
8116b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
8116b21
 
 
 
 
 
 
 
 
 
 
b1878ce
 
8116b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1878ce
 
8116b21
 
 
 
 
 
 
 
 
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1878ce
 
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1878ce
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8116b21
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1878ce
37fc0f3
 
 
 
b1878ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37fc0f3
8116b21
37fc0f3
 
 
 
 
 
 
 
 
 
8116b21
b1878ce
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
8116b21
 
 
 
 
 
 
 
 
 
 
 
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
b1878ce
 
 
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
b1878ce
 
37fc0f3
 
 
 
 
 
 
 
b1878ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37fc0f3
b1878ce
37fc0f3
b1878ce
 
37fc0f3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#!/usr/bin/env python3
import sys
import numpy as np
import librosa  
from functools import lru_cache
import time
from mosestokenizer import MosesTokenizer

@lru_cache
def load_audio(fname):
    a, _ = librosa.load(fname, sr=16000)
    return a

def load_audio_chunk(fname, beg, end):
    audio = load_audio(fname)
    beg_s = int(beg*16000)
    end_s = int(end*16000)
    return audio[beg_s:end_s]


# Whisper backend

class ASRBase:

    sep = " "

    def __init__(self, modelsize, lan, cache_dir):
        self.original_language = lan 

        self.model = self.load_model(modelsize, cache_dir)

    def load_model(self, modelsize, cache_dir):
        raise NotImplemented("mus be implemented in the child class")

    def transcribe(self, audio, init_prompt=""):
        raise NotImplemented("mus be implemented in the child class")


## requires imports:
#      import whisper
#      import whisper_timestamped

class WhisperTimestampedASR(ASRBase):
    """Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper.
    On the other hand, the installation for GPU could be easier.

    If used, requires imports:
        import whisper
        import whisper_timestamped
    """

    def load_model(self, modelsize, cache_dir):
        return whisper.load_model(modelsize, download_root=cache_dir)

    def transcribe(self, audio, init_prompt=""):
        result = whisper_timestamped.transcribe_timestamped(self.model, audio, language=self.original_language, initial_prompt=init_prompt, verbose=None, condition_on_previous_text=True)
        return result
 
    def ts_words(self,r):
        # return: transcribe result object to [(beg,end,"word1"), ...]
        o = []
        for s in r["segments"]:
            for w in s["words"]:
                t = (w["start"],w["end"],w["text"])
                o.append(t)
        return o

    def segments_end_ts(self, res):
        return [s["end"] for s in res["segments"]]


class FasterWhisperASR(ASRBase):
    """Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version.

    Requires imports, if used:
        import faster_whisper
    """

    sep = ""

    def load_model(self, modelsize, cache_dir):
        # cache_dir is not set, it seemed not working. Default ~/.cache/huggingface/hub is used.

        # this worked fast and reliably on NVIDIA L40
        model = WhisperModel(modelsize, device="cuda", compute_type="float16")

        # or run on GPU with INT8
        # tested: the transcripts were different, probably worse than with FP16, and it was slightly (appx 20%) slower
        #model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")

        # or run on CPU with INT8
        # tested: works, but slow, appx 10-times than cuda FP16
        #model = WhisperModel(model_size, device="cpu", compute_type="int8") #, download_root="faster-disk-cache-dir/")
        return model

    def transcribe(self, audio, init_prompt=""):
        wt = False
        segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True)
        return list(segments)

    def ts_words(self, segments):
        o = []
        for segment in segments:
            for word in segment.words:
                # not stripping the spaces -- should not be merged with them!
                w = word.word
                t = (word.start, word.end, w)
                o.append(t)
        return o

    def segments_end_ts(self, res):
        return [s.end for s in res]



class HypothesisBuffer:

    def __init__(self):
        self.commited_in_buffer = []
        self.buffer = []
        self.new = []

        self.last_commited_time = 0
        self.last_commited_word = None

    def insert(self, new, offset):
        # compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
        # the new tail is added to self.new
        
        new = [(a+offset,b+offset,t) for a,b,t in new]
        self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1]

        if len(self.new) >= 1:
            a,b,t = self.new[0]
            if abs(a - self.last_commited_time) < 1:
                if self.commited_in_buffer:
                    # it's going to search for 1, 2 or 3 consecutive words that are identical in commited and new. If they are, they're dropped.
                    cn = len(self.commited_in_buffer)
                    nn = len(self.new)
                    for i in range(1,min(min(cn,nn),5)+1):
                        c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
                        tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
                        if c == tail:
                            print("removing last",i,"words:",file=sys.stderr)
                            for j in range(i):
                                print("\t",self.new.pop(0),file=sys.stderr)
                            break

    def flush(self):
        # returns commited chunk = the longest common prefix of 2 last inserts. 

        commit = []
        while self.new:
            na, nb, nt = self.new[0]

            if len(self.buffer) == 0:
                break

            if nt == self.buffer[0][2]:
                commit.append((na,nb,nt))
                self.last_commited_word = nt
                self.last_commited_time = nb
                self.buffer.pop(0)
                self.new.pop(0)
            else:
                break
        self.buffer = self.new
        self.new = []
        self.commited_in_buffer.extend(commit)
        return commit

    def pop_commited(self, time):
        while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
            self.commited_in_buffer.pop(0)

    def complete(self):
        return self.buffer

class OnlineASRProcessor:

    SAMPLING_RATE = 16000

    def __init__(self, language, asr, chunk):
        """language: lang. code
        asr: WhisperASR object
        chunk: number of seconds for intended size of audio interval that is inserted and looped
        """
        self.language = language
        self.asr = asr
        self.tokenizer = MosesTokenizer("en")

        self.init()

        self.chunk = chunk


    def init(self):
        """run this when starting or restarting processing"""
        self.audio_buffer = np.array([],dtype=np.float32)
        self.buffer_time_offset = 0

        self.transcript_buffer = HypothesisBuffer()
        self.commited = []
        self.last_chunked_at = 0

        self.silence_iters = 0

    def insert_audio_chunk(self, audio):
        self.audio_buffer = np.append(self.audio_buffer, audio)

    def prompt(self):
        """Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer. 
        "context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
        """
        k = max(0,len(self.commited)-1)
        while k > 0 and self.commited[k-1][1] > self.last_chunked_at:
            k -= 1

        p = self.commited[:k]
        p = [t for _,_,t in p]
        prompt = []
        l = 0
        while p and l < 200:  # 200 characters prompt size
            x = p.pop(-1)
            l += len(x)+1
            prompt.append(x)
        non_prompt = self.commited[k:]
        return " ".join(prompt[::-1]), " ".join(t for _,_,t in non_prompt)

    def process_iter(self):
        """Runs on the current audio buffer.
        Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, ""). 
        The non-emty text is confirmed (commited) partial transcript.
        """

        prompt, non_prompt = self.prompt()
        print("PROMPT:", prompt, file=sys.stderr)
        print("CONTEXT:", non_prompt, file=sys.stderr)
        print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=sys.stderr)
        res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)

        # transform to [(beg,end,"word1"), ...]
        tsw = self.asr.ts_words(res)

        self.transcript_buffer.insert(tsw, self.buffer_time_offset)
        o = self.transcript_buffer.flush()
        self.commited.extend(o)
        print(">>>>COMPLETE NOW:",self.to_flush(o),file=sys.stderr,flush=True)
        print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True)

        # there is a newly confirmed text
        if o:
            # we trim all the completed sentences from the audio buffer
            self.chunk_completed_sentence()

            # ...segments could be considered
            #self.chunk_completed_segment(res)

            # 
#            self.silence_iters = 0

         # this was an attempt to trim silence/non-linguistic noise detected by the fact that Whisper doesn't transcribe anything for 3-times in a row.
         # It seemed not working better, or needs to be debugged.

#        elif self.transcript_buffer.complete():
#            self.silence_iters = 0
#        elif not self.transcript_buffer.complete():
#        #    print("NOT COMPLETE:",to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True)
#            self.silence_iters += 1
#            if self.silence_iters >= 3:
#                n = self.last_chunked_at
##                self.chunk_completed_sentence()
##                if n == self.last_chunked_at:
#                self.chunk_at(self.last_chunked_at+self.chunk)
#                print(f"\tCHUNK: 3-times silence! chunk_at {n}+{self.chunk}",file=sys.stderr)
##                self.silence_iters = 0


        # if the audio buffer is longer than 30s, trim it...
        if len(self.audio_buffer)/self.SAMPLING_RATE > 30:
            # ...on the last completed segment (labeled by Whisper)
            self.chunk_completed_segment(res)

            # alternative: on any word
            #l = self.buffer_time_offset + len(self.audio_buffer)/self.SAMPLING_RATE - 10
            # let's find commited word that is less
            #k = len(self.commited)-1
            #while k>0 and self.commited[k][1] > l:
            #    k -= 1
            #t = self.commited[k][1] 
            print(f"chunking because of len",file=sys.stderr)
            #self.chunk_at(t)

        print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=sys.stderr)
        return self.to_flush(o)

    def chunk_completed_sentence(self):
        if self.commited == []: return
        print(self.commited,file=sys.stderr)
        sents = self.words_to_sentences(self.commited)
        for s in sents:
            print("\t\tSENT:",s,file=sys.stderr)
        if len(sents) < 2:
            return
        while len(sents) > 2:
            sents.pop(0)
        # we will continue with audio processing at this timestamp
        chunk_at = sents[-2][1]

        print(f"--- sentence chunked at {chunk_at:2.2f}",file=sys.stderr)
        self.chunk_at(chunk_at)

    def chunk_completed_segment(self, res):
        if self.commited == []: return

        ends = self.asr.segments_end_ts(res)

        t = self.commited[-1][1]

        if len(ends) > 1:

            e = ends[-2]+self.buffer_time_offset
            while len(ends) > 2 and e > t:
                ends.pop(-1)
                e = ends[-2]+self.buffer_time_offset
            if e <= t:
                print(f"--- segment chunked at {e:2.2f}",file=sys.stderr)
                self.chunk_at(e)
            else:
                print(f"--- last segment not within commited area",file=sys.stderr)
        else:
            print(f"--- not enough segments to chunk",file=sys.stderr)





    def chunk_at(self, time):
        """trims the hypothesis and audio buffer at "time"
        """
        self.transcript_buffer.pop_commited(time)
        cut_seconds = time - self.buffer_time_offset
        self.audio_buffer = self.audio_buffer[int(cut_seconds)*self.SAMPLING_RATE:]
        self.buffer_time_offset = time
        self.last_chunked_at = time

    def words_to_sentences(self, words):
        """Uses mosestokenizer for sentence segmentation of words.
        Returns: [(beg,end,"sentence 1"),...]
        """
        
        cwords = [w for w in words]
        t = " ".join(o[2] for o in cwords)
        s = self.tokenizer.split(t)
        out = []
        while s:
            beg = None
            end = None
            sent = s.pop(0).strip()
            fsent = sent
            while cwords:
                b,e,w = cwords.pop(0)
                if beg is None and sent.startswith(w):
                    beg = b
                elif end is None and sent == w:
                    end = e
                    out.append((beg,end,fsent))
                    break
                sent = sent[len(w):].strip()
        return out

    def finish(self):
        """Flush the incomplete text when the whole processing ends.
        Returns: the same format as self.process_iter()
        """
        o = self.transcript_buffer.complete()
        f = self.to_flush(o)
        print("last, noncommited:",f,file=sys.stderr)
        return f


    def to_flush(self, sents, sep=None, offset=0, ):
        # concatenates the timestamped words or sentences into one sequence that is flushed in one line
        # sents: [(beg1, end1, "sentence1"), ...] or [] if empty
        # return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
        if sep is None:
            sep = self.asr.sep
        t = sep.join(s[2] for s in sents)
        if len(sents) == 0:
            b = None
            e = None
        else:
            b = offset + sents[0][0]
            e = offset + sents[-1][1]
        return (b,e,t)



## main:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.')
parser.add_argument('--model', type=str, default='large-v2', help="name of the Whisper model to use (default: large-v2, options: {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large}")
parser.add_argument('--model_dir', type=str, default='disk-cache-dir', help="the path where Whisper models are saved (or downloaded to). Default: ./disk-cache-dir")
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
args = parser.parse_args()

audio_path = args.audio_path

SAMPLING_RATE = 16000
duration = len(load_audio(audio_path))/SAMPLING_RATE
print("Audio duration is: %2.2f seconds" % duration, file=sys.stderr)

size = args.model
language = args.lan

t = time.time()
print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",flush=True)
#asr = WhisperASR(lan=language, modelsize=size)

if args.backend == "faster-whisper":
    from faster_whisper import WhisperModel
    asr_cls = FasterWhisperASR
else:
    import whisper
    import whisper_timestamped
#    from whisper_timestamped_model import WhisperTimestampedASR
    asr_cls = WhisperTimestampedASR

asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_dir)
e = time.time()
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)


min_chunk = args.min_chunk_size
online = OnlineASRProcessor(language,asr,min_chunk)


# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path,0,1)

# warm up the ASR, because the very first transcribe takes much more time than the other
asr.transcribe(a)

beg = args.start_at
start = time.time()-beg

def output_transcript(o):
    # output format in stdout is like:
    # 4186.3606 0 1720 Takhle to je
    # - the first three words are:
    #    - emission time from beginning of processing, in milliseconds
    #    - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
    # - the next words: segment transcript
    now = time.time()-start
    if o[0] is not None:
        print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
    else:
        print(o,file=sys.stderr,flush=True)

if args.offline: ## offline mode processing (for testing/debugging)
    a = load_audio(audio_path)
    online.insert_audio_chunk(a)
    try:
        o = online.process_iter()
    except AssertionError:
        print("assertion error",file=sys.stderr)
        pass
    else:
        output_transcript(o)
else: # online = simultaneous mode
    end = 0
    while True:
        now = time.time() - start
        if now < end+min_chunk:
            time.sleep(min_chunk+end-now)
        end = time.time() - start
        a = load_audio_chunk(audio_path,beg,end)
        beg = end
        online.insert_audio_chunk(a)

        try:
            o = online.process_iter()
        except AssertionError:
            print("assertion error",file=sys.stderr)
            pass
        else:
            output_transcript(o)
        now = time.time() - start
        print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=sys.stderr)

        print(file=sys.stderr,flush=True)

        if end >= duration:
            break

o = online.finish()
output_transcript(o)