|
|
|
import sys |
|
import numpy as np |
|
import librosa |
|
from functools import lru_cache |
|
import time |
|
from mosestokenizer import MosesTokenizer |
|
|
|
@lru_cache |
|
def load_audio(fname): |
|
a, _ = librosa.load(fname, sr=16000) |
|
return a |
|
|
|
def load_audio_chunk(fname, beg, end): |
|
audio = load_audio(fname) |
|
beg_s = int(beg*16000) |
|
end_s = int(end*16000) |
|
return audio[beg_s:end_s] |
|
|
|
|
|
|
|
|
|
class ASRBase: |
|
|
|
sep = " " |
|
|
|
def __init__(self, modelsize, lan, cache_dir): |
|
self.original_language = lan |
|
|
|
self.model = self.load_model(modelsize, cache_dir) |
|
|
|
def load_model(self, modelsize, cache_dir): |
|
raise NotImplemented("mus be implemented in the child class") |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
raise NotImplemented("mus be implemented in the child class") |
|
|
|
|
|
|
|
|
|
|
|
|
|
class WhisperTimestampedASR(ASRBase): |
|
"""Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper. |
|
On the other hand, the installation for GPU could be easier. |
|
|
|
If used, requires imports: |
|
import whisper |
|
import whisper_timestamped |
|
""" |
|
|
|
def load_model(self, modelsize, cache_dir): |
|
return whisper.load_model(modelsize, download_root=cache_dir) |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
result = whisper_timestamped.transcribe_timestamped(self.model, audio, language=self.original_language, initial_prompt=init_prompt, verbose=None, condition_on_previous_text=True) |
|
return result |
|
|
|
def ts_words(self,r): |
|
|
|
o = [] |
|
for s in r["segments"]: |
|
for w in s["words"]: |
|
t = (w["start"],w["end"],w["text"]) |
|
o.append(t) |
|
return o |
|
|
|
def segments_end_ts(self, res): |
|
return [s["end"] for s in res["segments"]] |
|
|
|
|
|
class FasterWhisperASR(ASRBase): |
|
"""Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version. |
|
|
|
Requires imports, if used: |
|
import faster_whisper |
|
""" |
|
|
|
sep = "" |
|
|
|
def load_model(self, modelsize, cache_dir): |
|
|
|
|
|
|
|
model = WhisperModel(modelsize, device="cuda", compute_type="float16") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return model |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
wt = False |
|
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True) |
|
return list(segments) |
|
|
|
def ts_words(self, segments): |
|
o = [] |
|
for segment in segments: |
|
for word in segment.words: |
|
|
|
w = word.word |
|
t = (word.start, word.end, w) |
|
o.append(t) |
|
return o |
|
|
|
def segments_end_ts(self, res): |
|
return [s.end for s in res] |
|
|
|
|
|
|
|
class HypothesisBuffer: |
|
|
|
def __init__(self): |
|
self.commited_in_buffer = [] |
|
self.buffer = [] |
|
self.new = [] |
|
|
|
self.last_commited_time = 0 |
|
self.last_commited_word = None |
|
|
|
def insert(self, new, offset): |
|
|
|
|
|
|
|
new = [(a+offset,b+offset,t) for a,b,t in new] |
|
self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1] |
|
|
|
if len(self.new) >= 1: |
|
a,b,t = self.new[0] |
|
if abs(a - self.last_commited_time) < 1: |
|
if self.commited_in_buffer: |
|
|
|
cn = len(self.commited_in_buffer) |
|
nn = len(self.new) |
|
for i in range(1,min(min(cn,nn),5)+1): |
|
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1]) |
|
tail = " ".join(self.new[j-1][2] for j in range(1,i+1)) |
|
if c == tail: |
|
print("removing last",i,"words:",file=sys.stderr) |
|
for j in range(i): |
|
print("\t",self.new.pop(0),file=sys.stderr) |
|
break |
|
|
|
def flush(self): |
|
|
|
|
|
commit = [] |
|
while self.new: |
|
na, nb, nt = self.new[0] |
|
|
|
if len(self.buffer) == 0: |
|
break |
|
|
|
if nt == self.buffer[0][2]: |
|
commit.append((na,nb,nt)) |
|
self.last_commited_word = nt |
|
self.last_commited_time = nb |
|
self.buffer.pop(0) |
|
self.new.pop(0) |
|
else: |
|
break |
|
self.buffer = self.new |
|
self.new = [] |
|
self.commited_in_buffer.extend(commit) |
|
return commit |
|
|
|
def pop_commited(self, time): |
|
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time: |
|
self.commited_in_buffer.pop(0) |
|
|
|
def complete(self): |
|
return self.buffer |
|
|
|
class OnlineASRProcessor: |
|
|
|
SAMPLING_RATE = 16000 |
|
|
|
def __init__(self, language, asr, chunk): |
|
"""language: lang. code |
|
asr: WhisperASR object |
|
chunk: number of seconds for intended size of audio interval that is inserted and looped |
|
""" |
|
self.language = language |
|
self.asr = asr |
|
self.tokenizer = MosesTokenizer("en") |
|
|
|
self.init() |
|
|
|
self.chunk = chunk |
|
|
|
|
|
def init(self): |
|
"""run this when starting or restarting processing""" |
|
self.audio_buffer = np.array([],dtype=np.float32) |
|
self.buffer_time_offset = 0 |
|
|
|
self.transcript_buffer = HypothesisBuffer() |
|
self.commited = [] |
|
self.last_chunked_at = 0 |
|
|
|
self.silence_iters = 0 |
|
|
|
def insert_audio_chunk(self, audio): |
|
self.audio_buffer = np.append(self.audio_buffer, audio) |
|
|
|
def prompt(self): |
|
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer. |
|
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons. |
|
""" |
|
k = max(0,len(self.commited)-1) |
|
while k > 0 and self.commited[k-1][1] > self.last_chunked_at: |
|
k -= 1 |
|
|
|
p = self.commited[:k] |
|
p = [t for _,_,t in p] |
|
prompt = [] |
|
l = 0 |
|
while p and l < 200: |
|
x = p.pop(-1) |
|
l += len(x)+1 |
|
prompt.append(x) |
|
non_prompt = self.commited[k:] |
|
return " ".join(prompt[::-1]), " ".join(t for _,_,t in non_prompt) |
|
|
|
def process_iter(self): |
|
"""Runs on the current audio buffer. |
|
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, ""). |
|
The non-emty text is confirmed (commited) partial transcript. |
|
""" |
|
|
|
prompt, non_prompt = self.prompt() |
|
print("PROMPT:", prompt, file=sys.stderr) |
|
print("CONTEXT:", non_prompt, file=sys.stderr) |
|
print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=sys.stderr) |
|
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt) |
|
|
|
|
|
tsw = self.asr.ts_words(res) |
|
|
|
self.transcript_buffer.insert(tsw, self.buffer_time_offset) |
|
o = self.transcript_buffer.flush() |
|
self.commited.extend(o) |
|
print(">>>>COMPLETE NOW:",self.to_flush(o),file=sys.stderr,flush=True) |
|
print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True) |
|
|
|
|
|
if o: |
|
|
|
self.chunk_completed_sentence() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(self.audio_buffer)/self.SAMPLING_RATE > 30: |
|
|
|
self.chunk_completed_segment(res) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"chunking because of len",file=sys.stderr) |
|
|
|
|
|
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=sys.stderr) |
|
return self.to_flush(o) |
|
|
|
def chunk_completed_sentence(self): |
|
if self.commited == []: return |
|
print(self.commited,file=sys.stderr) |
|
sents = self.words_to_sentences(self.commited) |
|
for s in sents: |
|
print("\t\tSENT:",s,file=sys.stderr) |
|
if len(sents) < 2: |
|
return |
|
while len(sents) > 2: |
|
sents.pop(0) |
|
|
|
chunk_at = sents[-2][1] |
|
|
|
print(f"--- sentence chunked at {chunk_at:2.2f}",file=sys.stderr) |
|
self.chunk_at(chunk_at) |
|
|
|
def chunk_completed_segment(self, res): |
|
if self.commited == []: return |
|
|
|
ends = self.asr.segments_end_ts(res) |
|
|
|
t = self.commited[-1][1] |
|
|
|
if len(ends) > 1: |
|
|
|
e = ends[-2]+self.buffer_time_offset |
|
while len(ends) > 2 and e > t: |
|
ends.pop(-1) |
|
e = ends[-2]+self.buffer_time_offset |
|
if e <= t: |
|
print(f"--- segment chunked at {e:2.2f}",file=sys.stderr) |
|
self.chunk_at(e) |
|
else: |
|
print(f"--- last segment not within commited area",file=sys.stderr) |
|
else: |
|
print(f"--- not enough segments to chunk",file=sys.stderr) |
|
|
|
|
|
|
|
|
|
|
|
def chunk_at(self, time): |
|
"""trims the hypothesis and audio buffer at "time" |
|
""" |
|
self.transcript_buffer.pop_commited(time) |
|
cut_seconds = time - self.buffer_time_offset |
|
self.audio_buffer = self.audio_buffer[int(cut_seconds)*self.SAMPLING_RATE:] |
|
self.buffer_time_offset = time |
|
self.last_chunked_at = time |
|
|
|
def words_to_sentences(self, words): |
|
"""Uses mosestokenizer for sentence segmentation of words. |
|
Returns: [(beg,end,"sentence 1"),...] |
|
""" |
|
|
|
cwords = [w for w in words] |
|
t = " ".join(o[2] for o in cwords) |
|
s = self.tokenizer.split(t) |
|
out = [] |
|
while s: |
|
beg = None |
|
end = None |
|
sent = s.pop(0).strip() |
|
fsent = sent |
|
while cwords: |
|
b,e,w = cwords.pop(0) |
|
if beg is None and sent.startswith(w): |
|
beg = b |
|
elif end is None and sent == w: |
|
end = e |
|
out.append((beg,end,fsent)) |
|
break |
|
sent = sent[len(w):].strip() |
|
return out |
|
|
|
def finish(self): |
|
"""Flush the incomplete text when the whole processing ends. |
|
Returns: the same format as self.process_iter() |
|
""" |
|
o = self.transcript_buffer.complete() |
|
f = self.to_flush(o) |
|
print("last, noncommited:",f,file=sys.stderr) |
|
return f |
|
|
|
|
|
def to_flush(self, sents, sep=None, offset=0, ): |
|
|
|
|
|
|
|
if sep is None: |
|
sep = self.asr.sep |
|
t = sep.join(s[2] for s in sents) |
|
if len(sents) == 0: |
|
b = None |
|
e = None |
|
else: |
|
b = offset + sents[0][0] |
|
e = offset + sents[-1][1] |
|
return (b,e,t) |
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.") |
|
parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.') |
|
parser.add_argument('--model', type=str, default='large-v2', help="name of the Whisper model to use (default: large-v2, options: {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large}") |
|
parser.add_argument('--model_dir', type=str, default='disk-cache-dir', help="the path where Whisper models are saved (or downloaded to). Default: ./disk-cache-dir") |
|
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.") |
|
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.') |
|
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.') |
|
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.') |
|
args = parser.parse_args() |
|
|
|
audio_path = args.audio_path |
|
|
|
SAMPLING_RATE = 16000 |
|
duration = len(load_audio(audio_path))/SAMPLING_RATE |
|
print("Audio duration is: %2.2f seconds" % duration, file=sys.stderr) |
|
|
|
size = args.model |
|
language = args.lan |
|
|
|
t = time.time() |
|
print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",flush=True) |
|
|
|
|
|
if args.backend == "faster-whisper": |
|
from faster_whisper import WhisperModel |
|
asr_cls = FasterWhisperASR |
|
else: |
|
import whisper |
|
import whisper_timestamped |
|
|
|
asr_cls = WhisperTimestampedASR |
|
|
|
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_dir) |
|
e = time.time() |
|
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr) |
|
|
|
|
|
min_chunk = args.min_chunk_size |
|
online = OnlineASRProcessor(language,asr,min_chunk) |
|
|
|
|
|
|
|
a = load_audio_chunk(audio_path,0,1) |
|
|
|
|
|
asr.transcribe(a) |
|
|
|
beg = args.start_at |
|
start = time.time()-beg |
|
|
|
def output_transcript(o): |
|
|
|
|
|
|
|
|
|
|
|
|
|
now = time.time()-start |
|
if o[0] is not None: |
|
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True) |
|
else: |
|
print(o,file=sys.stderr,flush=True) |
|
|
|
if args.offline: |
|
a = load_audio(audio_path) |
|
online.insert_audio_chunk(a) |
|
try: |
|
o = online.process_iter() |
|
except AssertionError: |
|
print("assertion error",file=sys.stderr) |
|
pass |
|
else: |
|
output_transcript(o) |
|
else: |
|
end = 0 |
|
while True: |
|
now = time.time() - start |
|
if now < end+min_chunk: |
|
time.sleep(min_chunk+end-now) |
|
end = time.time() - start |
|
a = load_audio_chunk(audio_path,beg,end) |
|
beg = end |
|
online.insert_audio_chunk(a) |
|
|
|
try: |
|
o = online.process_iter() |
|
except AssertionError: |
|
print("assertion error",file=sys.stderr) |
|
pass |
|
else: |
|
output_transcript(o) |
|
now = time.time() - start |
|
print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=sys.stderr) |
|
|
|
print(file=sys.stderr,flush=True) |
|
|
|
if end >= duration: |
|
break |
|
|
|
o = online.finish() |
|
output_transcript(o) |
|
|