WhisperLiveKitDiarization / whisper_fastapi_online_server.py
qfuxa's picture
add fastapi server with live webm to pcm conversion and web page showing both complete transcription and partial transcription
104f7bd
raw
history blame
4.58 kB
import io
import argparse
import asyncio
import numpy as np
import ffmpeg
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from whisper_online import asr_factory, add_shared_args
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default='localhost')
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--warmup-file", type=str, dest="warmup_file",
help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .")
add_shared_args(parser)
args = parser.parse_args()
# Initialize Whisper
asr, online = asr_factory(args)
# Load demo HTML for the root endpoint
with open("live_transcription.html", "r") as f:
html = f.read()
@app.get("/")
async def get():
return HTMLResponse(html)
# Streaming constants
SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2 # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
async def start_ffmpeg_decoder():
"""
Start an FFmpeg process in async streaming mode that reads WebM from stdin
and outputs raw s16le PCM on stdout. Returns the process object.
"""
process = (
ffmpeg
.input('pipe:0', format='webm')
.output('pipe:1', format='s16le', acodec='pcm_s16le', ac=CHANNELS, ar=str(SAMPLE_RATE))
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
)
return process
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
print("WebSocket connection opened.")
ffmpeg_process = await start_ffmpeg_decoder()
pcm_buffer = bytearray()
# Continuously read decoded PCM from ffmpeg stdout in a background task
async def ffmpeg_stdout_reader():
nonlocal pcm_buffer
loop = asyncio.get_event_loop()
while True:
try:
chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 4096)
if not chunk: # FFmpeg might have closed
print("FFmpeg stdout closed.")
break
pcm_buffer.extend(chunk)
# Process in 3-second batches
while len(pcm_buffer) >= BYTES_PER_SEC:
three_sec_chunk = pcm_buffer[:BYTES_PER_SEC]
del pcm_buffer[:BYTES_PER_SEC]
# Convert int16 -> float32
pcm_array = np.frombuffer(three_sec_chunk, dtype=np.int16).astype(np.float32) / 32768.0
# Send PCM data to Whisper
online.insert_audio_chunk(pcm_array)
transcription = online.process_iter()
buffer = online.to_flush(online.transcript_buffer.buffer)
# Return partial transcription results to the client
await websocket.send_json({
"transcription": transcription[2],
"buffer": buffer[2]
})
except Exception as e:
print(f"Exception in ffmpeg_stdout_reader: {e}")
break
print("Exiting ffmpeg_stdout_reader...")
stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())
try:
while True:
# Receive incoming WebM audio chunks from the client
message = await websocket.receive_bytes()
# Pass them to ffmpeg via stdin
ffmpeg_process.stdin.write(message)
ffmpeg_process.stdin.flush()
except WebSocketDisconnect:
print("WebSocket connection closed.")
except Exception as e:
print(f"Error in websocket loop: {e}")
finally:
# Clean up ffmpeg and the reader task
try:
ffmpeg_process.stdin.close()
except:
pass
stdout_reader_task.cancel()
try:
ffmpeg_process.stdout.close()
except:
pass
ffmpeg_process.wait()
if __name__ == "__main__":
import uvicorn
uvicorn.run("whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True)