File size: 2,978 Bytes
1eb2368
 
 
 
 
078fee7
 
58fac9f
078fee7
58fac9f
078fee7
 
1eb2368
 
 
078fee7
58fac9f
078fee7
6ee4115
078fee7
1eb2368
 
 
078fee7
 
 
6ee4115
078fee7
0eec7e8
078fee7
 
 
6ee4115
078fee7
0eec7e8
1eb2368
 
0eec7e8
1eb2368
 
 
 
6ee4115
078fee7
0eec7e8
1eb2368
6ee4115
1eb2368
6ee4115
0eec7e8
1eb2368
6ee4115
1eb2368
 
078fee7
 
 
1eb2368
6ee4115
0eec7e8
1eb2368
 
 
 
078fee7
0eec7e8
078fee7
 
6ee4115
1eb2368
 
 
 
 
 
6ee4115
1eb2368
 
078fee7
1eb2368
 
 
 
 
6ee4115
0eec7e8
1eb2368
0eec7e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import pandas as pd
import numpy as np
import tensorflow as tf
import joblib
import os

# Define file paths
BASE_DIR = os.path.dirname(__file__)
KERAS_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.keras")
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")

@st.cache_resource
def load_model():
    try:
        return tf.keras.models.load_model(KERAS_MODEL_PATH)
    except Exception as e:
        st.error(f"❌ Failed to load model:\n\n{e}")
        st.stop()

@st.cache_data
def load_assets():
    try:
        df_movies = pd.read_csv(MOVIES_PATH)
    except FileNotFoundError:
        st.error("❌ movies.csv not found.")
        st.stop()

    try:
        user_map, movie_map = joblib.load(ENCODINGS_PATH)
    except FileNotFoundError:
        st.error("❌ encodings.pkl not found.")
        st.stop()

    return df_movies, user_map, movie_map

# Load model and assets
model = load_model()
movies_df, user2idx, movie2idx = load_assets()
reverse_movie_map = {v: k for k, v in movie2idx.items()}

# App UI
st.title("🎬 TensorFlow Movie Recommender")
st.write("Select some movies you've liked to get personalized recommendations:")

# Movie selection UI
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
movie_choices = [movie_titles[mid] for mid in movie2idx if mid in movie_titles]
selected_titles = st.multiselect("🎞️ Liked movies", sorted(movie_choices))

# Create ratings dictionary
user_ratings = {}
for title in selected_titles:
    movie_id = next((k for k, v in movie_titles.items() if v == title), None)
    if movie_id:
        user_ratings[movie_id] = 5.0

# Generate recommendations
if st.button("🎯 Get Recommendations"):
    if not user_ratings:
        st.warning("Please select at least one movie.")
    else:
        liked_indices = [movie2idx[m] for m in user_ratings if m in movie2idx]
        if not liked_indices:
            st.error("⚠️ No valid movie encodings found.")
            st.stop()

        # Get embedding averages and scores
        avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
        all_movie_indices = tf.range(len(movie2idx))
        movie_embeddings = model.layers[3](all_movie_indices)
        scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
        top_indices = np.argsort(scores)[::-1]

        # Top N recommendations excluding already-liked
        recommended = []
        for idx in top_indices:
            mid = reverse_movie_map.get(idx)
            if mid not in user_ratings and mid in movie_titles:
                recommended.append((movie_titles[mid], scores[idx]))
            if len(recommended) >= 10:
                break

        # Display recommendations
        st.subheader("🍿 Top 10 Recommendations")
        for title, score in recommended:
            st.write(f"**{title}** β€” Score: `{score:.3f}`")