Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import torch.nn as nn | |
from transformers import (CLIPImageProcessor, CLIPVisionConfig, | |
CLIPVisionModel, SiglipImageProcessor, | |
SiglipVisionConfig, SiglipVisionModel) | |
from .videollama3_encoder import (Videollama3VisionEncoderConfig, | |
Videollama3VisionEncoderModel, Videollama3ImageProcessor) | |
class CLIPVisionEncoder(nn.Module): | |
def __init__(self, vision_encoder, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_encoder_name = vision_encoder | |
self.select_layer = args.mm_vision_select_layer | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
if not delay_load: | |
self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') | |
self.load_model() | |
else: | |
# uncertain whether flash-attention-2 is supported during inference phase. | |
self.attn_implementation = 'sdpa' # 'eager' | |
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name) | |
def load_model(self): | |
if self.is_loaded: | |
print('Vision tower is already loaded, `load model` call again, skipping.') | |
return | |
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_encoder_name) | |
self.vision_encoder = CLIPVisionModel.from_pretrained(self.vision_encoder_name, | |
attn_implementation=self.attn_implementation) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features[:, 1:] | |
elif self.select_feature == 'cls_patch': | |
image_features = image_features | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images, **kwargs): | |
images = torch.cat(images) | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_encoder.dtype | |
def device(self): | |
return self.vision_encoder.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_encoder.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
def num_patches_per_side(self): | |
return self.config.image_size // self.config.patch_size | |
def image_size(self): | |
return self.config.image_size | |
class SiglipVisionEncoder(nn.Module): | |
def __init__(self, vision_encoder, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_encoder_name = vision_encoder | |
self.select_layer = args.mm_vision_select_layer | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
if not delay_load: | |
self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') | |
self.load_model() | |
else: | |
# uncertain whether flash-attention-2 is supported during inference phase. | |
self.attn_implementation = 'sdpa' # 'eager' | |
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name) | |
def load_model(self): | |
if self.is_loaded: | |
print('Vision tower is already loaded, `load model` call again, skipping.') | |
return | |
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_encoder_name) | |
self.vision_encoder = SiglipVisionModel.from_pretrained(self.vision_encoder_name, | |
attn_implementation=self.attn_implementation) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images, **kwargs): | |
images = torch.cat(images) | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_encoder.dtype | |
def device(self): | |
return self.vision_encoder.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_encoder.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
def num_patches_per_side(self): | |
return self.config.image_size // self.config.patch_size | |
def image_size(self): | |
return self.config.image_size | |
class Videollama3VisionEncoder(nn.Module): | |
def __init__(self, vision_encoder, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_encoder_name = vision_encoder | |
self.args = args | |
if not delay_load: | |
self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') | |
self.load_model(self.args) | |
else: | |
# uncertain whether flash-attention-2 is supported during inference phase. | |
self.attn_implementation = 'sdpa' # 'eager' | |
self.cfg_only = Videollama3VisionEncoderConfig.from_pretrained(self.vision_encoder_name) | |
def load_model(self, args): | |
if self.is_loaded: | |
print('Vision tower is already loaded, `load model` call again, skipping.') | |
return | |
# merge_size is set to 1 by default, because STAGE1, STAGE1.5, STAGE2 are trained with merge_size=1 | |
# for stage 3, the merge_size is set to 2 by argments. | |
self.image_processor = Videollama3ImageProcessor.from_pretrained(self.vision_encoder_name) | |
# merge_size is fixed to 1 for STAGE1, STAGE1.5, STAGE2, STAGE3 in encoder and can be modified in connector. | |
self.cfg_only = Videollama3VisionEncoderConfig.from_pretrained(self.vision_encoder_name) | |
self.vision_encoder = Videollama3VisionEncoderModel.from_pretrained( | |
self.vision_encoder_name, | |
torch_dtype=args.torch_dtype, | |
attn_implementation=self.attn_implementation) | |
self.is_loaded = True | |
def forward(self, pixel_values, grid_sizes, merge_sizes, **kwargs): | |
image_features = self.vision_encoder(pixel_values, grid_sizes, merge_sizes) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_encoder.dtype | |
def device(self): | |
return self.vision_encoder.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_encoder.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return -1 | |
def num_patches_per_side(self): | |
return -1 | |
def image_size(self): | |
return -1 | |
def build_vision_encoder(vision_encoder_cfg, **kwargs): | |
vision_encoder = getattr(vision_encoder_cfg, 'mm_vision_encoder', getattr(vision_encoder_cfg, 'vision_encoder', None)) | |
if 'clip' in vision_encoder: | |
vision_encoder = CLIPVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) | |
elif 'navit' in vision_encoder.lower() or 'damovl' in vision_encoder: | |
vision_encoder = Videollama3VisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) | |
elif 'siglip' in vision_encoder: | |
vision_encoder = SiglipVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) | |
else: | |
raise ValueError(f'Unknown vision encoder: {vision_encoder}') | |
return vision_encoder | |