|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import base64 |
|
import nest_asyncio |
|
from llama_index.core import SummaryIndex |
|
from llama_index.readers.web import SimpleWebPageReader |
|
from llama_index.llms.ollama import Ollama |
|
from llama_index.tools.wikipedia import WikipediaToolSpec |
|
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader |
|
from llama_index.core.tools import FunctionTool |
|
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec |
|
from llama_index.core.agent.workflow import AgentWorkflow |
|
from llama_index.llms.gemini import Gemini |
|
from llama_index.core.schema import Document |
|
from llama_index.core import get_response_synthesizer |
|
import pandas as pd |
|
import asyncio |
|
|
|
nest_asyncio.apply() |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
|
|
|
|
|
|
self.llm = Gemini(model_name="models/gemini-2.0-flash") |
|
def load_video_transcript(video_link: str) -> str: |
|
try: |
|
loader = YoutubeTranscriptReader() |
|
documents = loader.load_data( |
|
ytlinks=[video_link] |
|
) |
|
|
|
text = documents[0].text_resource.text |
|
|
|
return { "video_transcript": text } |
|
except Exception as e: |
|
print("error", e) |
|
|
|
load_video_transcript_tool = FunctionTool.from_defaults( |
|
load_video_transcript, |
|
name="load_video_transcript", |
|
description="Loads transcript of the given video using the link. If some calls fail, we can still keep using this tool for others.", |
|
) |
|
|
|
def web_page_reader(url: str) -> str: |
|
try: |
|
documents = SimpleWebPageReader(html_to_text=True).load_data( |
|
[url] |
|
) |
|
|
|
return { "web_page_read_reasult": "\n".join([doc.text for doc in documents]) } |
|
except Exception as e: |
|
print("error in webpage", e) |
|
|
|
web_page_reader_tool = FunctionTool.from_defaults( |
|
web_page_reader, |
|
name="web_page_reader", |
|
description="Visits the wepage on given url and returns response on the passed query" |
|
) |
|
|
|
def duck_duck_go_search_tool(query: str) -> str: |
|
try: |
|
raw_results = DuckDuckGoSearchToolSpec().duckduckgo_full_search(query, max_results=5) |
|
texts = [res['body'] for res in raw_results] |
|
full_text = "\n".join(texts) |
|
return { "web_search_results": full_text } |
|
|
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
|
|
duckduckgo_search_tool = FunctionTool.from_defaults( |
|
duck_duck_go_search_tool, |
|
name="duck_duck_go_search_tool", |
|
description="Searches the web and refines the result into a high-quality answer. Use when other tools don't seem suitable" |
|
) |
|
|
|
def wikipedia_search(page_title: str, query: str) -> str: |
|
try: |
|
text = WikipediaToolSpec().load_data(page=page_title) |
|
|
|
if text == "": |
|
text = WikipediaToolSpec().search_data(query) |
|
|
|
return { "wiki_search_results": text } |
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
|
|
wikipedia_search_tool = FunctionTool.from_defaults( |
|
wikipedia_search, |
|
name="wikipedia_search", |
|
description="Searches wikipedia and converts results into a high quality answer." |
|
) |
|
|
|
self.agent = AgentWorkflow.from_tools_or_functions([duckduckgo_search_tool, load_video_transcript_tool, wikipedia_search_tool, web_page_reader_tool], llm=self.llm, system_prompt="You're an ai agent designed for question answering. Keep your answers concise or even one word when possible. You have access to a bunch of tools, utilise them well to reach answers.") |
|
print("BasicAgent initialized.") |
|
|
|
async def run_agent(self, question: str): |
|
return await self.agent.run(question) |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
response = asyncio.run(self.run_agent(question=question)) |
|
|
|
final_answer = response.response.blocks[0].text |
|
print(f"Agent returning fixed answer: {final_answer}") |
|
return final_answer |
|
|
|
async def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
files_url = f"{api_url}/files/" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=30) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
await asyncio.sleep(20) |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
encoded = None |
|
if item.get("file_name") != "": |
|
response = requests.get(files_url + task_id) |
|
response.raise_for_status() |
|
|
|
data = response.content |
|
|
|
encoded = base64.b64encode(data).decode('utf-8') |
|
|
|
if encoded is not None: |
|
submitted_answer = agent(question_text + "\nfile_data: " + encoded) |
|
else: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |