Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from transformers import BertForSequenceClassification, Trainer, TrainingArguments, BertTokenizer | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
class CSVTrainer: | |
def __init__(self): | |
self.csv_files = [] | |
self.model_dir = "./Personal" | |
self.repo_id = "luohoa97/PersonalBot-o" | |
def upload_and_train(self, csv_files): | |
if not csv_files: | |
return "Please upload at least one CSV file." | |
dataframes = [pd.read_csv(file.name) for file in csv_files] | |
combined_df = pd.concat(dataframes, ignore_index=True) | |
combined_df['text'] = combined_df.apply(lambda row: f"{row['Event']} in {row['Location']} on {row['Date']}, {row['Time']}", axis=1) | |
combined_df['labels'] = pd.factorize(combined_df['Category'])[0] | |
dataset = Dataset.from_pandas(combined_df[['text', 'labels']]) | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
def tokenize_function(examples): | |
return tokenizer(examples['text'], padding='max_length', truncation=True) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
tokenized_datasets.set_format("torch", columns=['input_ids', 'attention_mask', 'labels']) | |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=len(combined_df['labels'].unique())) | |
training_args = TrainingArguments( | |
output_dir='./results', | |
num_train_epochs=3, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=64, | |
warmup_steps=500, | |
weight_decay=0.01, | |
logging_dir='./logs', | |
logging_steps=10, | |
evaluation_strategy="epoch", | |
save_strategy="epoch" | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets, | |
eval_dataset=tokenized_datasets | |
) | |
trainer.train() | |
model.save_pretrained(self.model_dir) | |
self.upload_to_huggingface() | |
return "Model uploaded to Hugging Face successfully!" | |
def upload_to_huggingface(self): | |
api = HfApi() | |
try: | |
api.create_repo(repo_id=self.repo_id) | |
except Exception as e: | |
print(f"Repo creation failed: {e}") | |
model = BertForSequenceClassification.from_pretrained(self.model_dir) | |
model.push_to_hub(self.repo_id) | |
trainer = CSVTrainer() | |
def gradio_interface(file): | |
return trainer.upload_and_train(file) | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.inputs.File(label="Upload CSV Files", type="file", multiple=True), | |
outputs="text", | |
title="CSV Trainer", | |
description="Upload CSV files for training a BERT model." | |
) | |
iface.launch() |