Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,643 Bytes
1a6d10d 886bd4b 992fb70 4af8987 1a6d10d d065cac 4af8987 d36d36b 4af8987 1a6d10d 4af8987 1a6d10d 4af8987 8569025 4af8987 8569025 4af8987 1a6d10d 4af8987 8569025 4af8987 1a6d10d 4af8987 886bd4b 4af8987 886bd4b 4af8987 1a6d10d 4af8987 1a6d10d 5da485d 1a6d10d 5da485d 4af8987 5da485d 4af8987 5da485d 8569025 1a6d10d 4af8987 1a6d10d 4af8987 1a6d10d 8569025 1a6d10d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import queue
import threading
import spaces
import os
import io
import soundfile as sf
import gradio as gr
import numpy as np
import torch
from transformers import set_seed
from huggingface_hub import InferenceClient
from kokoro import KModel, KPipeline
# -----------------------------------------------------------------------------
# Hard‑coded podcast subject
# -----------------------------------------------------------------------------
PODCAST_SUBJECT = "The future of AI and its impact on society"
# -----------------------------------------------------------------------------
# LLM that writes the script (unchanged)
# -----------------------------------------------------------------------------
client = InferenceClient(
"meta-llama/Llama-3.3-70B-Instruct",
provider="cerebras",
token=os.getenv("HF_TOKEN"),
)
def generate_podcast_text(subject: str) -> str:
"""Ask the LLM for a script of a podcast given by two hosts."""
prompt = f"""Generate the script of "Open Paper review", a podcast told by 2 hosts about {subject}.
The podcast should be an insightful discussion, with some amount of playful banter.
Separate dialog as follows, using [S1] for the male host and [S2] for the female host, for instance:
[S1] Hello, how are you?
[S2] I'm good, thank you. How are you?
[S1] I'm good, thank you.
[S2] Great.
Now go on, make 5 minutes of podcast.
"""
response = client.chat_completion(
[{"role": "user", "content": prompt}],
max_tokens=8156,
)
return response.choices[0].message.content
# -----------------------------------------------------------------------------
# Kokoro TTS
# -----------------------------------------------------------------------------
CUDA_AVAILABLE = torch.cuda.is_available()
kmodel = KModel().to("cuda" if CUDA_AVAILABLE else "cpu").eval()
kpipeline = KPipeline(lang_code="a") # English voices
MALE_VOICE = "am_michael" # [S1]
FEMALE_VOICE = "af_heart" # [S2]
# Pre‑warm voices to avoid first‑call latency
for v in (MALE_VOICE, FEMALE_VOICE):
kpipeline.load_voice(v)
# -----------------------------------------------------------------------------
# Audio generation system with queue
# -----------------------------------------------------------------------------
audio_queue: queue.Queue[tuple[int, np.ndarray] | None] = queue.Queue()
stop_signal = threading.Event()
@spaces.GPU
def process_audio_chunks(podcast_text: str, speed: float = 1.0) -> None:
"""Read each line, pick voice via tag, send chunks to the queue."""
lines = [l for l in podcast_text.strip().splitlines() if l.strip()]
pipeline = kpipeline
pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE)
pipeline_voice_male = pipeline.load_voice(MALE_VOICE)
for line in lines:
if stop_signal.is_set():
break
# Expect "[S1] ..." or "[S2] ..."
if line.startswith("[S1]"):
pipeline_voice = pipeline_voice_male
voice = MALE_VOICE
utterance = line[len("[S1]"):].strip()
elif line.startswith("[S2]"):
pipeline_voice = pipeline_voice_female
voice = FEMALE_VOICE
utterance = line[len("[S2]"):].strip()
else: # fallback
pipeline_voice = pipeline_voice_female
voice = FEMALE_VOICE
utterance = line
first = True
for _, ps, _ in pipeline(utterance, voice, speed):
ref_s = pipeline_voice[len(ps) - 1]
audio = kmodel(ps, ref_s, speed)
audio_queue.put((24000, audio.numpy()))
audio_numpy = audio.numpy()
if first:
first = False
audio_queue.put((24000, torch.zeros(1).numpy()))
audio_queue.put(None) # Signal end of stream
def stream_audio_generator(podcast_text: str):
stop_signal.clear()
threading.Thread(target=process_audio_chunks, args=(podcast_text,)).start()
while True:
chunk = audio_queue.get()
if chunk is None:
break
sr, data = chunk
buf = io.BytesIO()
sf.write(buf, data, sr, format="wav")
buf.seek(0)
yield buf.getvalue(), "Generating podcast..."
def stop_generation():
stop_signal.set()
return "Generation stopped"
def generate_podcast():
return generate_podcast_text(PODCAST_SUBJECT)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# NotebookLM Podcast Generator")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(f"## Current Topic: {PODCAST_SUBJECT}")
gr.Markdown(
"This app generates a podcast discussion between two hosts about the specified topic."
)
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
gr.Markdown("## Audio Preview")
gr.Markdown("Click below to hear the podcast with realistic voices:")
with gr.Row():
start_audio_btn = gr.Button("▶️ Generate Podcast", variant="secondary")
stop_btn = gr.Button("⏹️ Stop", variant="stop")
audio_output = gr.Audio(label="Podcast Audio", streaming=True)
status_text = gr.Textbox(label="Status", visible=True)
generate_btn.click(fn=generate_podcast, outputs=podcast_output)
start_audio_btn.click(fn=stream_audio_generator, inputs=podcast_output, outputs=[audio_output, status_text])
stop_btn.click(fn=stop_generation, outputs=status_text)
if __name__ == "__main__":
demo.queue().launch()
|