Spaces:
Sleeping
Sleeping
File size: 19,084 Bytes
c105678 3a58e1b cd1cc5d 3a58e1b c105678 e5edf92 3a58e1b cd1cc5d e4c93be db29a74 c105678 3a58e1b c105678 3a58e1b e5edf92 c105678 e5edf92 c105678 e5edf92 c105678 3a58e1b e4c93be db29a74 cd1cc5d e5edf92 cd1cc5d e4c93be cd1cc5d 2057821 cd1cc5d 2057821 c105678 e4c93be cd1cc5d 5a23d7c cd1cc5d db29a74 cd1cc5d db29a74 cd1cc5d db29a74 cd1cc5d db29a74 5a23d7c e4c93be cd1cc5d 5a23d7c db29a74 5a23d7c db29a74 5a23d7c db29a74 cd1cc5d db29a74 cd1cc5d db29a74 e4c93be db29a74 e4c93be db29a74 e4c93be db29a74 e4c93be db29a74 e4c93be db29a74 e4c93be c105678 cd1cc5d db29a74 cd1cc5d c105678 44dd3d7 c105678 cd1cc5d db29a74 cd1cc5d c105678 3a58e1b cd1cc5d 3a58e1b cd1cc5d 3a58e1b cd1cc5d 3a58e1b e4c93be cd1cc5d 5a23d7c 3a58e1b c105678 2057821 cd1cc5d db29a74 2057821 cd1cc5d 2057821 cd1cc5d c105678 2057821 db29a74 e4c93be db29a74 e4c93be db29a74 3a58e1b db29a74 3a58e1b 2057821 db29a74 e4c93be db29a74 e4c93be 2057821 c105678 2057821 e4c93be 2057821 5a23d7c 2057821 e4c93be 2057821 c105678 cd1cc5d 3a58e1b cd1cc5d 3a58e1b cd1cc5d 3a58e1b c105678 3a58e1b c105678 cd1cc5d c105678 cd1cc5d 5a23d7c cd1cc5d c105678 cd1cc5d e5edf92 cd1cc5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download
from flask_cors import CORS
import numpy as np
import trimesh
from transformers import pipeline
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
# Create necessary directories
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)
# Set Hugging Face cache environment variables
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
# Job tracking dictionary
processing_jobs = {}
# Global model variables
depth_estimator = None
model_loaded = False
model_loading = False
# Configuration for processing
TIMEOUT_SECONDS = 180 # 3 minutes max for processing
MAX_DIMENSION = 512 # Max image dimension to process
# TimeoutError for handling timeouts
class TimeoutError(Exception):
pass
# Thread-safe timeout implementation
def process_with_timeout(function, args, timeout):
result = [None]
error = [None]
completed = [False]
def target():
try:
result[0] = function(*args)
completed[0] = True
except Exception as e:
error[0] = e
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
thread.join(timeout)
if not completed[0]:
if thread.is_alive():
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
elif error[0]:
return None, error[0]
if error[0]:
return None, error[0]
return result[0], None
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# Function to preprocess image
def preprocess_image(image_path):
with Image.open(image_path) as img:
img = img.convert("RGB")
# Resize if the image is too large
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
# Calculate new dimensions while preserving aspect ratio
if img.width > img.height:
new_width = MAX_DIMENSION
new_height = int(img.height * (MAX_DIMENSION / img.width))
else:
new_height = MAX_DIMENSION
new_width = int(img.width * (MAX_DIMENSION / img.height))
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def load_model():
global depth_estimator, model_loaded, model_loading
if model_loaded:
return depth_estimator
if model_loading:
# Wait for model to load if it's already in progress
while model_loading and not model_loaded:
time.sleep(0.5)
return depth_estimator
try:
model_loading = True
print("Starting model loading...")
# Using DPT-Hybrid which is smaller than other depth estimation models
model_name = "Intel/dpt-hybrid-midas"
# Download model with retry mechanism
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
snapshot_download(
repo_id=model_name,
cache_dir=CACHE_DIR,
resume_download=True,
)
break
except Exception as e:
if attempt < max_retries - 1:
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
else:
raise
# Initialize model with lower precision to save memory
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load depth estimator pipeline
depth_estimator = pipeline(
"depth-estimation",
model=model_name,
device=device if device == "cuda" else -1,
cache_dir=CACHE_DIR
)
# Optimize memory usage
if device == "cuda":
torch.cuda.empty_cache()
model_loaded = True
print(f"Model loaded successfully on {device}")
return depth_estimator
except Exception as e:
print(f"Error loading model: {str(e)}")
print(traceback.format_exc())
raise
finally:
model_loading = False
# Convert depth map to 3D mesh
def depth_to_mesh(depth_map, image, resolution=100):
"""Convert depth map to 3D mesh"""
# Get dimensions
h, w = depth_map.shape
# Create a grid of points
x = np.linspace(0, w-1, resolution)
y = np.linspace(0, h-1, resolution)
x_grid, y_grid = np.meshgrid(x, y)
# Sample depth at grid points
x_indices = x_grid.astype(int)
y_indices = y_grid.astype(int)
z_values = depth_map[y_indices, x_indices]
# Normalize depth values to suitable range
z_min, z_max = z_values.min(), z_values.max()
z_values = (z_values - z_min) / (z_max - z_min) * 2.0 # Map to 0-2 range
# Normalize x and y coordinates
x_grid = (x_grid / w - 0.5) * 2.0 # Map to -1 to 1
y_grid = (y_grid / h - 0.5) * 2.0 # Map to -1 to 1
# Create vertices
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
# Create faces (triangles)
faces = []
for i in range(resolution-1):
for j in range(resolution-1):
p1 = i * resolution + j
p2 = i * resolution + (j + 1)
p3 = (i + 1) * resolution + j
p4 = (i + 1) * resolution + (j + 1)
faces.append([p1, p2, p4])
faces.append([p1, p4, p3])
faces = np.array(faces)
# Create mesh
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
# Optional: Apply texture from original image
if image:
# This is simplified - proper UV mapping would be needed for accurate texturing
pass
return mesh
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model": "Depth-Based 3D Model Generator",
"device": "cuda" if torch.cuda.is_available() else "cpu"
}), 200
@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
def generate():
if job_id not in processing_jobs:
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
return
job = processing_jobs[job_id]
# Send initial progress
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
# Wait for job to complete or update
last_progress = job['progress']
check_count = 0
while job['status'] == 'processing':
if job['progress'] != last_progress:
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
time.sleep(0.5)
check_count += 1
# If client hasn't received updates for a while, check if job is still running
if check_count > 60: # 30 seconds with no updates
if 'thread_alive' in job and not job['thread_alive']():
job['status'] = 'error'
job['error'] = 'Processing thread died unexpectedly'
break
check_count = 0
# Send final status
if job['status'] == 'completed':
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
else:
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
return Response(stream_with_context(generate()), mimetype='text/event-stream')
@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
# Check if image is in the request
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No image selected"}), 400
if not allowed_file(file.filename):
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
# Get optional parameters with defaults
try:
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
output_format = request.form.get('output_format', 'obj').lower()
except ValueError:
return jsonify({"error": "Invalid parameter values"}), 400
# Validate output format
if output_format not in ['obj', 'glb']:
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
# Create a job ID
job_id = str(uuid.uuid4())
output_dir = os.path.join(RESULTS_FOLDER, job_id)
os.makedirs(output_dir, exist_ok=True)
# Save the uploaded file
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
file.save(filepath)
# Initialize job tracking
processing_jobs[job_id] = {
'status': 'processing',
'progress': 0,
'result_url': None,
'preview_url': None,
'error': None,
'output_format': output_format,
'created_at': time.time()
}
# Start processing in a separate thread
def process_image():
thread = threading.current_thread()
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
try:
# Preprocess image
processing_jobs[job_id]['progress'] = 5
image = preprocess_image(filepath)
processing_jobs[job_id]['progress'] = 10
# Load model
try:
model = load_model()
processing_jobs[job_id]['progress'] = 30
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
return
# Process image with thread-safe timeout
try:
def estimate_depth():
# Get depth map
result = model(image)
depth_map = result["depth"]
# Convert to numpy array if needed
if isinstance(depth_map, torch.Tensor):
depth_map = depth_map.cpu().numpy()
elif hasattr(depth_map, 'numpy'):
depth_map = depth_map.numpy()
return depth_map
depth_map, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
if error:
if isinstance(error, TimeoutError):
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
return
else:
raise error
processing_jobs[job_id]['progress'] = 60
# Create mesh from depth map
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution)
processing_jobs[job_id]['progress'] = 80
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
return
# Export based on requested format
try:
if output_format == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
mesh.export(obj_path, file_type='obj')
# Create a zip file with OBJ and MTL
zip_path = os.path.join(output_dir, "model.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(obj_path, arcname="model.obj")
mtl_path = os.path.join(output_dir, "model.mtl")
if os.path.exists(mtl_path):
zipf.write(mtl_path, arcname="model.mtl")
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
elif output_format == 'glb':
# Export as GLB
glb_path = os.path.join(output_dir, "model.glb")
mesh.export(glb_path, file_type='glb')
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
# Update job status
processing_jobs[job_id]['status'] = 'completed'
processing_jobs[job_id]['progress'] = 100
print(f"Job {job_id} completed successfully")
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error exporting model: {str(e)}"
print(f"Error exporting model for job {job_id}: {str(e)}")
print(error_details)
# Clean up temporary file
if os.path.exists(filepath):
os.remove(filepath)
# Force garbage collection to free memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
# Handle errors
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
# Clean up on error
if os.path.exists(filepath):
os.remove(filepath)
# Start processing thread
processing_thread = threading.Thread(target=process_image)
processing_thread.daemon = True
processing_thread.start()
# Return job ID immediately
return jsonify({"job_id": job_id}), 202 # 202 Accepted
@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
# Get the output directory for this job
output_dir = os.path.join(RESULTS_FOLDER, job_id)
# Determine file format from the job data
output_format = processing_jobs[job_id].get('output_format', 'obj')
if output_format == 'obj':
zip_path = os.path.join(output_dir, "model.zip")
if os.path.exists(zip_path):
return send_file(zip_path, as_attachment=True, download_name="model.zip")
else: # glb
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
return send_file(glb_path, as_attachment=True, download_name="model.glb")
return jsonify({"error": "File not found"}), 404
@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
# Get the output directory for this job
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = processing_jobs[job_id].get('output_format', 'obj')
if output_format == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
if os.path.exists(obj_path):
return send_file(obj_path, mimetype='model/obj')
else: # glb
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
return send_file(glb_path, mimetype='model/gltf-binary')
return jsonify({"error": "Model file not found"}), 404
# Cleanup old jobs periodically
def cleanup_old_jobs():
current_time = time.time()
job_ids_to_remove = []
for job_id, job_data in processing_jobs.items():
# Remove completed jobs after 1 hour
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
job_ids_to_remove.append(job_id)
# Remove error jobs after 30 minutes
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
job_ids_to_remove.append(job_id)
# Remove the jobs
for job_id in job_ids_to_remove:
output_dir = os.path.join(RESULTS_FOLDER, job_id)
try:
import shutil
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
except Exception as e:
print(f"Error cleaning up job {job_id}: {str(e)}")
# Remove from tracking dictionary
if job_id in processing_jobs:
del processing_jobs[job_id]
# Schedule the next cleanup
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
@app.route('/', methods=['GET'])
def index():
return jsonify({
"message": "Image to 3D API is running",
"endpoints": ["/convert", "/progress/<job_id>", "/download/<job_id>", "/preview/<job_id>"]
}), 200
if __name__ == '__main__':
# Start the cleanup thread
cleanup_old_jobs()
# Use port 7860 which is standard for Hugging Face Spaces
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port) |