File size: 19,084 Bytes
c105678
 
3a58e1b
 
 
cd1cc5d
3a58e1b
c105678
 
 
 
e5edf92
 
3a58e1b
cd1cc5d
e4c93be
 
db29a74
c105678
 
3a58e1b
c105678
3a58e1b
e5edf92
 
 
c105678
 
e5edf92
c105678
 
e5edf92
 
 
 
 
 
c105678
 
 
 
3a58e1b
 
 
e4c93be
db29a74
cd1cc5d
 
e5edf92
cd1cc5d
e4c93be
cd1cc5d
 
2057821
cd1cc5d
 
 
2057821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
 
 
 
e4c93be
cd1cc5d
 
 
 
 
 
 
 
 
 
 
 
 
 
5a23d7c
cd1cc5d
 
db29a74
cd1cc5d
 
db29a74
cd1cc5d
 
 
 
 
db29a74
cd1cc5d
 
 
 
 
db29a74
 
5a23d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c93be
cd1cc5d
5a23d7c
db29a74
 
 
 
 
 
5a23d7c
 
db29a74
5a23d7c
db29a74
cd1cc5d
 
 
db29a74
cd1cc5d
 
 
 
 
 
 
 
db29a74
 
 
 
 
e4c93be
db29a74
 
 
 
e4c93be
db29a74
 
 
 
e4c93be
db29a74
 
 
e4c93be
db29a74
 
 
e4c93be
db29a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c93be
c105678
 
cd1cc5d
 
db29a74
cd1cc5d
 
c105678
44dd3d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
 
 
 
 
 
 
 
 
 
 
 
 
cd1cc5d
 
db29a74
cd1cc5d
 
 
 
c105678
 
 
 
3a58e1b
 
 
 
 
 
 
cd1cc5d
3a58e1b
 
 
 
 
 
 
 
 
cd1cc5d
 
3a58e1b
 
 
 
cd1cc5d
 
 
3a58e1b
e4c93be
cd1cc5d
5a23d7c
3a58e1b
c105678
2057821
cd1cc5d
db29a74
2057821
 
cd1cc5d
2057821
cd1cc5d
c105678
2057821
 
db29a74
 
 
 
e4c93be
db29a74
 
 
 
 
e4c93be
db29a74
3a58e1b
db29a74
3a58e1b
2057821
 
 
 
 
 
 
 
db29a74
e4c93be
db29a74
 
 
e4c93be
2057821
 
 
 
 
 
 
c105678
2057821
 
 
 
e4c93be
2057821
 
 
 
 
5a23d7c
2057821
 
 
 
 
 
 
 
 
e4c93be
2057821
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
cd1cc5d
 
 
 
 
 
 
 
 
3a58e1b
 
 
 
 
 
 
cd1cc5d
 
 
 
3a58e1b
 
cd1cc5d
 
 
3a58e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
 
3a58e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
cd1cc5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
 
cd1cc5d
5a23d7c
cd1cc5d
 
c105678
 
cd1cc5d
 
 
e5edf92
 
cd1cc5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download
from flask_cors import CORS
import numpy as np
import trimesh
from transformers import pipeline

app = Flask(__name__)
CORS(app)  # Enable CORS for all routes

# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}

# Create necessary directories
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)

# Set Hugging Face cache environment variables
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 16MB max

# Job tracking dictionary
processing_jobs = {}

# Global model variables
depth_estimator = None
model_loaded = False
model_loading = False

# Configuration for processing
TIMEOUT_SECONDS = 180  # 3 minutes max for processing
MAX_DIMENSION = 512    # Max image dimension to process

# TimeoutError for handling timeouts
class TimeoutError(Exception):
    pass

# Thread-safe timeout implementation
def process_with_timeout(function, args, timeout):
    result = [None]
    error = [None]
    completed = [False]
    
    def target():
        try:
            result[0] = function(*args)
            completed[0] = True
        except Exception as e:
            error[0] = e
    
    thread = threading.Thread(target=target)
    thread.daemon = True
    thread.start()
    
    thread.join(timeout)
    
    if not completed[0]:
        if thread.is_alive():
            return None, TimeoutError(f"Processing timed out after {timeout} seconds")
        elif error[0]:
            return None, error[0]
    
    if error[0]:
        return None, error[0]
    
    return result[0], None

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# Function to preprocess image
def preprocess_image(image_path):
    with Image.open(image_path) as img:
        img = img.convert("RGB")
        # Resize if the image is too large
        if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
            # Calculate new dimensions while preserving aspect ratio
            if img.width > img.height:
                new_width = MAX_DIMENSION
                new_height = int(img.height * (MAX_DIMENSION / img.width))
            else:
                new_height = MAX_DIMENSION
                new_width = int(img.width * (MAX_DIMENSION / img.height))
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        return img

def load_model():
    global depth_estimator, model_loaded, model_loading
    
    if model_loaded:
        return depth_estimator
    
    if model_loading:
        # Wait for model to load if it's already in progress
        while model_loading and not model_loaded:
            time.sleep(0.5)
        return depth_estimator
    
    try:
        model_loading = True
        print("Starting model loading...")
        
        # Using DPT-Hybrid which is smaller than other depth estimation models
        model_name = "Intel/dpt-hybrid-midas"
        
        # Download model with retry mechanism
        max_retries = 3
        retry_delay = 5
        
        for attempt in range(max_retries):
            try:
                snapshot_download(
                    repo_id=model_name,
                    cache_dir=CACHE_DIR,
                    resume_download=True,
                )
                break
            except Exception as e:
                if attempt < max_retries - 1:
                    print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
                    time.sleep(retry_delay)
                    retry_delay *= 2
                else:
                    raise
        
        # Initialize model with lower precision to save memory
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        # Load depth estimator pipeline
        depth_estimator = pipeline(
            "depth-estimation", 
            model=model_name,
            device=device if device == "cuda" else -1,
            cache_dir=CACHE_DIR
        )
        
        # Optimize memory usage
        if device == "cuda":
            torch.cuda.empty_cache()
        
        model_loaded = True
        print(f"Model loaded successfully on {device}")
        return depth_estimator
    
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        print(traceback.format_exc())
        raise
    finally:
        model_loading = False

# Convert depth map to 3D mesh
def depth_to_mesh(depth_map, image, resolution=100):
    """Convert depth map to 3D mesh"""
    # Get dimensions
    h, w = depth_map.shape
    
    # Create a grid of points
    x = np.linspace(0, w-1, resolution)
    y = np.linspace(0, h-1, resolution)
    x_grid, y_grid = np.meshgrid(x, y)
    
    # Sample depth at grid points
    x_indices = x_grid.astype(int)
    y_indices = y_grid.astype(int)
    z_values = depth_map[y_indices, x_indices]
    
    # Normalize depth values to suitable range
    z_min, z_max = z_values.min(), z_values.max()
    z_values = (z_values - z_min) / (z_max - z_min) * 2.0  # Map to 0-2 range
    
    # Normalize x and y coordinates
    x_grid = (x_grid / w - 0.5) * 2.0  # Map to -1 to 1
    y_grid = (y_grid / h - 0.5) * 2.0  # Map to -1 to 1
    
    # Create vertices
    vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
    
    # Create faces (triangles)
    faces = []
    for i in range(resolution-1):
        for j in range(resolution-1):
            p1 = i * resolution + j
            p2 = i * resolution + (j + 1)
            p3 = (i + 1) * resolution + j
            p4 = (i + 1) * resolution + (j + 1)
            
            faces.append([p1, p2, p4])
            faces.append([p1, p4, p3])
    
    faces = np.array(faces)
    
    # Create mesh
    mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
    
    # Optional: Apply texture from original image
    if image:
        # This is simplified - proper UV mapping would be needed for accurate texturing
        pass
    
    return mesh

@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({
        "status": "healthy", 
        "model": "Depth-Based 3D Model Generator",
        "device": "cuda" if torch.cuda.is_available() else "cpu"
    }), 200

@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
    def generate():
        if job_id not in processing_jobs:
            yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
            return
            
        job = processing_jobs[job_id]
        
        # Send initial progress
        yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
        
        # Wait for job to complete or update
        last_progress = job['progress']
        check_count = 0
        while job['status'] == 'processing':
            if job['progress'] != last_progress:
                yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
                last_progress = job['progress']
            
            time.sleep(0.5)
            check_count += 1
            
            # If client hasn't received updates for a while, check if job is still running
            if check_count > 60:  # 30 seconds with no updates
                if 'thread_alive' in job and not job['thread_alive']():
                    job['status'] = 'error'
                    job['error'] = 'Processing thread died unexpectedly'
                    break
                check_count = 0
        
        # Send final status
        if job['status'] == 'completed':
            yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
        else:
            yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
    
    return Response(stream_with_context(generate()), mimetype='text/event-stream')

@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
    # Check if image is in the request
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    if file.filename == '':
        return jsonify({"error": "No image selected"}), 400
    
    if not allowed_file(file.filename):
        return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
    
    # Get optional parameters with defaults
    try:
        mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200)  # Limit max resolution
        output_format = request.form.get('output_format', 'obj').lower()
    except ValueError:
        return jsonify({"error": "Invalid parameter values"}), 400
    
    # Validate output format
    if output_format not in ['obj', 'glb']:
        return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
    
    # Create a job ID
    job_id = str(uuid.uuid4())
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    os.makedirs(output_dir, exist_ok=True)
    
    # Save the uploaded file
    filename = secure_filename(file.filename)
    filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
    file.save(filepath)
    
    # Initialize job tracking
    processing_jobs[job_id] = {
        'status': 'processing',
        'progress': 0,
        'result_url': None,
        'preview_url': None,
        'error': None,
        'output_format': output_format,
        'created_at': time.time()
    }
    
    # Start processing in a separate thread
    def process_image():
        thread = threading.current_thread()
        processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
        
        try:
            # Preprocess image
            processing_jobs[job_id]['progress'] = 5
            image = preprocess_image(filepath)
            processing_jobs[job_id]['progress'] = 10
            
            # Load model
            try:
                model = load_model()
                processing_jobs[job_id]['progress'] = 30
            except Exception as e:
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
                return
            
            # Process image with thread-safe timeout
            try:
                def estimate_depth():
                    # Get depth map
                    result = model(image)
                    depth_map = result["depth"]
                    
                    # Convert to numpy array if needed
                    if isinstance(depth_map, torch.Tensor):
                        depth_map = depth_map.cpu().numpy()
                    elif hasattr(depth_map, 'numpy'):
                        depth_map = depth_map.numpy()
                    
                    return depth_map
                
                depth_map, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
                
                if error:
                    if isinstance(error, TimeoutError):
                        processing_jobs[job_id]['status'] = 'error'
                        processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
                        return
                    else:
                        raise error
                        
                processing_jobs[job_id]['progress'] = 60
                
                # Create mesh from depth map
                mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution)
                processing_jobs[job_id]['progress'] = 80
                
            except Exception as e:
                error_details = traceback.format_exc()
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
                print(f"Error processing job {job_id}: {str(e)}")
                print(error_details)
                return
            
            # Export based on requested format
            try:
                if output_format == 'obj':
                    obj_path = os.path.join(output_dir, "model.obj")
                    mesh.export(obj_path, file_type='obj')
                    
                    # Create a zip file with OBJ and MTL
                    zip_path = os.path.join(output_dir, "model.zip")
                    with zipfile.ZipFile(zip_path, 'w') as zipf:
                        zipf.write(obj_path, arcname="model.obj")
                        mtl_path = os.path.join(output_dir, "model.mtl")
                        if os.path.exists(mtl_path):
                            zipf.write(mtl_path, arcname="model.mtl")
                    
                    processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
                    processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
                    
                elif output_format == 'glb':
                    # Export as GLB
                    glb_path = os.path.join(output_dir, "model.glb")
                    mesh.export(glb_path, file_type='glb')
                    
                    processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
                    processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
                
                # Update job status
                processing_jobs[job_id]['status'] = 'completed'
                processing_jobs[job_id]['progress'] = 100
                print(f"Job {job_id} completed successfully")
            except Exception as e:
                error_details = traceback.format_exc()
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error exporting model: {str(e)}"
                print(f"Error exporting model for job {job_id}: {str(e)}")
                print(error_details)
            
            # Clean up temporary file
            if os.path.exists(filepath):
                os.remove(filepath)
            
            # Force garbage collection to free memory
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            
        except Exception as e:
            # Handle errors
            error_details = traceback.format_exc()
            processing_jobs[job_id]['status'] = 'error'
            processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
            print(f"Error processing job {job_id}: {str(e)}")
            print(error_details)
            
            # Clean up on error
            if os.path.exists(filepath):
                os.remove(filepath)
    
    # Start processing thread
    processing_thread = threading.Thread(target=process_image)
    processing_thread.daemon = True
    processing_thread.start()
    
    # Return job ID immediately
    return jsonify({"job_id": job_id}), 202  # 202 Accepted

@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
    if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
        return jsonify({"error": "Model not found or processing not complete"}), 404
    
    # Get the output directory for this job
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    
    # Determine file format from the job data
    output_format = processing_jobs[job_id].get('output_format', 'obj')
    
    if output_format == 'obj':
        zip_path = os.path.join(output_dir, "model.zip")
        if os.path.exists(zip_path):
            return send_file(zip_path, as_attachment=True, download_name="model.zip")
    else:  # glb
        glb_path = os.path.join(output_dir, "model.glb")
        if os.path.exists(glb_path):
            return send_file(glb_path, as_attachment=True, download_name="model.glb")
    
    return jsonify({"error": "File not found"}), 404

@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
    if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
        return jsonify({"error": "Model not found or processing not complete"}), 404
    
    # Get the output directory for this job
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    output_format = processing_jobs[job_id].get('output_format', 'obj')

    if output_format == 'obj':
        obj_path = os.path.join(output_dir, "model.obj")
        if os.path.exists(obj_path):
            return send_file(obj_path, mimetype='model/obj')
    else:  # glb
        glb_path = os.path.join(output_dir, "model.glb")
        if os.path.exists(glb_path):
            return send_file(glb_path, mimetype='model/gltf-binary')
    
    return jsonify({"error": "Model file not found"}), 404

# Cleanup old jobs periodically
def cleanup_old_jobs():
    current_time = time.time()
    job_ids_to_remove = []
    
    for job_id, job_data in processing_jobs.items():
        # Remove completed jobs after 1 hour
        if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
            job_ids_to_remove.append(job_id)
        # Remove error jobs after 30 minutes
        elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
            job_ids_to_remove.append(job_id)
    
    # Remove the jobs
    for job_id in job_ids_to_remove:
        output_dir = os.path.join(RESULTS_FOLDER, job_id)
        try:
            import shutil
            if os.path.exists(output_dir):
                shutil.rmtree(output_dir)
        except Exception as e:
            print(f"Error cleaning up job {job_id}: {str(e)}")
        
        # Remove from tracking dictionary
        if job_id in processing_jobs:
            del processing_jobs[job_id]
    
    # Schedule the next cleanup
    threading.Timer(300, cleanup_old_jobs).start()  # Run every 5 minutes

@app.route('/', methods=['GET'])
def index():
    return jsonify({
        "message": "Image to 3D API is running", 
        "endpoints": ["/convert", "/progress/<job_id>", "/download/<job_id>", "/preview/<job_id>"]
    }), 200

if __name__ == '__main__':
    # Start the cleanup thread
    cleanup_old_jobs()
    
    # Use port 7860 which is standard for Hugging Face Spaces
    port = int(os.environ.get('PORT', 7860))
    app.run(host='0.0.0.0', port=port)