Spaces:
Sleeping
Sleeping
File size: 33,510 Bytes
a29e958 f4e7b4f 3f46408 fedd7f3 f7322c8 fedd7f3 44b1add fedd7f3 f7322c8 5d5da2a fedd7f3 fc6ee0d 5f6c08a fedd7f3 5d5da2a fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 ef85737 fedd7f3 f7322c8 fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 a29e958 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 ef85737 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 fedd7f3 f7322c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
import streamlit as st
import os
import time
from datetime import datetime, timezone
import json
import PyPDF2
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from twilio.rest import Client
from groq import Groq
import re # Import re module
# --- Page Configuration ---
st.set_page_config(page_title="RAG Customer Support Chatbot", layout="wide")
# --- Default Configurations & File Paths ---
DEFAULT_TWILIO_ACCOUNT_SID_FALLBACK = "" # Fallback if secret "TWILIO_SID" is not found
DEFAULT_TWILIO_AUTH_TOKEN_FALLBACK = "" # Fallback if secret "TWILIO_TOKEN" is not found
DEFAULT_GROQ_API_KEY_FALLBACK = "" # Fallback if secret "GROQ_API_KEY" is not found
DEFAULT_TWILIO_CONVERSATION_SERVICE_SID = ""
DEFAULT_TWILIO_BOT_WHATSAPP_IDENTITY = st.secrets.get("TWILIO_PHONE_NUMBER")#"whatsapp:+14155238886" # Twilio Sandbox default
DEFAULT_EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
DEFAULT_POLLING_INTERVAL_S = 30
DOCS_FOLDER = "docs/"
CUSTOMER_ORDERS_FILE = os.path.join(DOCS_FOLDER, "CustomerOrders.json")
PRODUCTS_FILE = os.path.join(DOCS_FOLDER, "Products.json")
POLICY_PDF_FILE = os.path.join(DOCS_FOLDER, "ProductReturnPolicy.pdf")
FAQ_PDF_FILE = os.path.join(DOCS_FOLDER, "FAQ.pdf")
# --- Application Secrets Configuration ---
# These are the primary keys fetched from st.secrets as per user request
APP_TWILIO_ACCOUNT_SID = st.secrets.get("TWILIO_ACCOUNT_SID")
APP_TWILIO_AUTH_TOKEN = st.secrets.get("TWILIO_AUTH_TOKEN")
APP_GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
# Other secrets with fallback to defaults/sidebar input (if secrets not found)
APP_TWILIO_CONVERSATION_SERVICE_SID_SECRET = st.secrets.get("TWILIO_CONVERSATION_SERVICE_SID")
APP_TWILIO_BOT_WHATSAPP_IDENTITY_SECRET = st.secrets.get("TWILIO_BOT_WHATSAPP_IDENTITY")
# --- RAG Processing Utilities ---
def load_json_data(file_path):
"""Loads data from a JSON file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
except FileNotFoundError:
st.error(f"Error: JSON file not found at {file_path}")
return None
except json.JSONDecodeError:
st.error(f"Error: Could not decode JSON from {file_path}")
return None
except Exception as e:
st.error(f"An unexpected error occurred while loading {file_path}: {e}")
return None
def load_pdf_data(file_path):
"""Extracts text from a PDF file, page by page."""
try:
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
text_pages = []
for page_num in range(len(reader.pages)):
page = reader.pages[page_num]
text_pages.append(page.extract_text() or "")
return text_pages
except FileNotFoundError:
st.error(f"Error: PDF file not found at {file_path}")
return []
except Exception as e:
st.error(f"An error occurred while processing PDF {file_path}: {e}")
return []
def chunk_text(text_pages, chunk_size=1000, chunk_overlap=200):
"""Chunks text from PDF pages into smaller, overlapping pieces."""
full_text = "\n".join(text_pages)
if not full_text.strip():
return []
chunks = []
start = 0
while start < len(full_text):
end = start + chunk_size
chunks.append(full_text[start:end])
if end >= len(full_text):
break
start += (chunk_size - chunk_overlap)
if start >= len(full_text):
break
return [chunk for chunk in chunks if chunk.strip()]
@st.cache_resource(show_spinner="Initializing embedding model...")
def initialize_embedding_model(model_name=DEFAULT_EMBEDDING_MODEL_NAME):
"""Initializes and returns a SentenceTransformer model."""
try:
model = SentenceTransformer(model_name)
return model
except Exception as e:
st.error(f"Error initializing embedding model '{model_name}': {e}")
return None
@st.cache_resource(show_spinner="Building FAISS index for PDF documents...")
def create_faiss_index(_text_chunks, _embedding_model):
"""Creates a FAISS index from text chunks and an embedding model."""
if not _text_chunks or _embedding_model is None:
st.warning("Cannot create FAISS index: No text chunks or embedding model available.")
return None, []
try:
valid_chunks = [str(chunk) for chunk in _text_chunks if chunk and isinstance(chunk, str) and chunk.strip()]
if not valid_chunks:
st.warning("No valid text chunks to embed for FAISS index.")
return None, []
embeddings = _embedding_model.encode(valid_chunks, convert_to_tensor=False)
if embeddings.ndim == 1:
embeddings = embeddings.reshape(1, -1)
if embeddings.shape[0] == 0:
st.warning("No embeddings were generated for FAISS index.")
return None, []
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings, dtype=np.float32))
return index, valid_chunks
except Exception as e:
st.error(f"Error creating FAISS index: {e}")
return None, []
def search_faiss_index(index, query_text, embedding_model, indexed_chunks, k=3):
"""Searches the FAISS index and returns top_k relevant chunk texts."""
if index is None or embedding_model is None or not query_text:
return []
try:
query_embedding = embedding_model.encode([query_text], convert_to_tensor=False)
if query_embedding.ndim == 1:
query_embedding = query_embedding.reshape(1, -1)
distances, indices = index.search(np.array(query_embedding, dtype=np.float32), k)
results = []
for i in range(len(indices[0])):
idx = indices[0][i]
if 0 <= idx < len(indexed_chunks):
results.append(indexed_chunks[idx])
return results
except Exception as e:
st.error(f"Error searching FAISS index: {e}")
return []
def get_order_details(order_id, customer_orders_data):
"""Retrieves order details for a given order_id."""
if not customer_orders_data:
return "Customer order data is not loaded."
for order in customer_orders_data:
if order.get("order_id") == order_id:
return json.dumps(order, indent=2)
return f"No order found with ID: {order_id}."
def get_product_info(query, products_data):
"""Retrieves product information based on a query."""
if not products_data:
return "Product data is not loaded."
query_lower = query.lower()
found_products = []
for product in products_data:
if query_lower in (product.get("name", "").lower()) or \
query_lower in (product.get("description", "").lower()) or \
query_lower == (product.get("product_id", "").lower()):
found_products.append(product)
if found_products:
return json.dumps(found_products, indent=2)
return f"No product information found matching your query: '{query}'."
# --- LLM Operations ---
@st.cache_data(show_spinner="Generating response with LLaMA3...")
def generate_response_groq(_groq_client, query, context, model="llama3-8b-8192"):
"""Generates a response using GROQ LLaMA3 API."""
if not _groq_client:
return "GROQ client not initialized. Please check API key."
if not query:
return "Query is empty."
prompt = f"""You are a helpful customer support assistant.
Use the following context to answer the user's question.
If the context doesn't contain the answer, state that you don't have enough information.
Do not make up information. Be concise and polite.
Context:
{context}
User Question: {query}
Assistant Answer:
"""
try:
chat_completion = _groq_client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful customer support assistant."},
{"role": "user", "content": prompt}
],
model=model, temperature=0.7, max_tokens=1024, top_p=1
)
response = chat_completion.choices[0].message.content
return response
except Exception as e:
st.error(f"Error calling GROQ API: {e}")
return "Sorry, I encountered an error while trying to generate a response."
def initialize_groq_client(api_key_val):
"""Initializes the GROQ client."""
if not api_key_val: # Changed parameter name to avoid conflict
st.warning("GROQ API Key is missing.")
return None
try:
client = Groq(api_key=api_key_val)
return client
except Exception as e:
st.error(f"Failed to initialize GROQ client: {e}")
return None
# --- Twilio Operations ---
def initialize_twilio_client(acc_sid, auth_tkn): # Changed parameter names
"""Initializes the Twilio client."""
if not acc_sid or not auth_tkn:
st.warning("Twilio Account SID or Auth Token is missing.")
return None
try:
client = Client(acc_sid, auth_tkn)
return client
except Exception as e:
st.error(f"Failed to initialize Twilio client: {e}")
return None
def get_new_whatsapp_messages(twilio_client, conversation_service_sid_val, bot_start_time_utc, # Renamed
processed_message_sids, bot_whatsapp_identity_val): # Renamed
"""Fetches new, unanswered WhatsApp messages from Twilio Conversations."""
if not twilio_client:
st.warning("Twilio client not initialized.")
return []
if not conversation_service_sid_val:
st.warning("Twilio Conversation Service SID not provided.")
return []
new_messages_to_process = []
try:
conversations = twilio_client.conversations.v1 \
.services(conversation_service_sid_val) \
.conversations \
.list(limit=50)
for conv in conversations:
if conv.date_updated and conv.date_updated > bot_start_time_utc:
messages = twilio_client.conversations.v1 \
.services(conversation_service_sid_val) \
.conversations(conv.sid) \
.messages \
.list(order='desc', limit=10)
for msg in messages:
if msg.sid in processed_message_sids:
continue
if msg.author and msg.author.lower() != bot_whatsapp_identity_val.lower() and \
msg.date_created and msg.date_created > bot_start_time_utc:
new_messages_to_process.append({
"conversation_sid": conv.sid, "message_sid": msg.sid,
"author_identity": msg.author, "message_body": msg.body,
"timestamp_utc": msg.date_created
})
break
except Exception as e:
st.error(f"Error fetching Twilio messages: {e}")
return sorted(new_messages_to_process, key=lambda m: m['timestamp_utc'])
def send_whatsapp_message(twilio_client, conversation_service_sid_val, conversation_sid, message_body, bot_identity_val): # Renamed
"""Sends a message to a Twilio Conversation from the bot's identity."""
if not twilio_client:
st.error("Twilio client not initialized for sending message.")
return False
if not conversation_service_sid_val:
st.error("Twilio Conversation Service SID not provided for sending message.")
return False
if not bot_identity_val:
st.error("Bot identity not provided for sending message.")
return False
try:
twilio_client.conversations.v1 \
.services(conversation_service_sid_val) \
.conversations(conversation_sid) \
.messages \
.create(author=bot_identity_val, body=message_body)
st.success(f"Sent reply to conversation {conversation_sid}")
return True
except Exception as e:
st.error(f"Error sending Twilio message to {conversation_sid}: {e}")
return False
# --- Main Application Logic & UI ---
st.title("🤖 RAG-Based Customer Support Chatbot")
st.markdown("Powered by Streamlit, Twilio, GROQ LLaMA3, and FAISS.")
# --- Sidebar for Configurations ---
st.sidebar.title("⚙️ Configurations")
# Use APP_ prefixed variables for values from secrets, then allow manual input if not found
if APP_TWILIO_ACCOUNT_SID:
st.sidebar.text_input("Twilio Account SID (from Secrets)", value="********" + APP_TWILIO_ACCOUNT_SID[-4:] if len(APP_TWILIO_ACCOUNT_SID) > 4 else "********", disabled=True)
twilio_account_sid_to_use = APP_TWILIO_ACCOUNT_SID
else:
st.sidebar.warning("Secret 'TWILIO_SID' not found.")
twilio_account_sid_to_use = st.sidebar.text_input("Twilio Account SID (Enter Manually)", value=DEFAULT_TWILIO_ACCOUNT_SID_FALLBACK, type="password")
if APP_TWILIO_AUTH_TOKEN:
st.sidebar.text_input("Twilio Auth Token (from Secrets)", value="********", disabled=True)
twilio_auth_token_to_use = APP_TWILIO_AUTH_TOKEN
else:
st.sidebar.warning("Secret 'TWILIO_TOKEN' not found.")
twilio_auth_token_to_use = st.sidebar.text_input("Twilio Auth Token (Enter Manually)", value=DEFAULT_TWILIO_AUTH_TOKEN_FALLBACK, type="password")
if APP_GROQ_API_KEY:
st.sidebar.text_input("GROQ API Key (from Secrets)", value="gsk_********" + APP_GROQ_API_KEY[-4:] if len(APP_GROQ_API_KEY) > 8 else "********", disabled=True)
groq_api_key_to_use = APP_GROQ_API_KEY
else:
st.sidebar.warning("Secret 'GROQ_API_KEY' not found.")
groq_api_key_to_use = st.sidebar.text_input("GROQ API Key (Enter Manually)", value=DEFAULT_GROQ_API_KEY_FALLBACK, type="password")
# For other configurations that can be overridden if secrets not found or for user preference
twilio_conversation_service_sid_to_use = st.sidebar.text_input(
"Twilio Conversation Service SID (IS...)",
value=APP_TWILIO_CONVERSATION_SERVICE_SID_SECRET or DEFAULT_TWILIO_CONVERSATION_SERVICE_SID,
type="password",
help="The SID of your Twilio Conversations Service. Can be set by 'TWILIO_CONVERSATION_SERVICE_SID' secret."
)
twilio_bot_whatsapp_identity_to_use = st.sidebar.text_input(
"Twilio Bot WhatsApp Identity",
value=APP_TWILIO_BOT_WHATSAPP_IDENTITY_SECRET or DEFAULT_TWILIO_BOT_WHATSAPP_IDENTITY,
help="e.g., 'whatsapp:+1234567890'. Can be set by 'TWILIO_BOT_WHATSAPP_IDENTITY' secret."
)
embedding_model_name_to_use = st.sidebar.text_input( # Renamed
"Embedding Model Name",
value=DEFAULT_EMBEDDING_MODEL_NAME
)
polling_interval_to_use = st.sidebar.number_input( # Renamed
"Twilio Polling Interval (seconds)",
min_value=10, max_value=300,
value=DEFAULT_POLLING_INTERVAL_S,
step=5
)
# --- Initialize Session State ---
if "app_started" not in st.session_state: st.session_state.app_started = False
if "bot_started" not in st.session_state: st.session_state.bot_started = False
if "rag_pipeline_ready" not in st.session_state: st.session_state.rag_pipeline_ready = False
if "last_twilio_poll_time" not in st.session_state: st.session_state.last_twilio_poll_time = time.time()
if "bot_start_time_utc" not in st.session_state: st.session_state.bot_start_time_utc = None
if "processed_message_sids" not in st.session_state: st.session_state.processed_message_sids = set()
if "manual_chat_history" not in st.session_state: st.session_state.manual_chat_history = []
# --- Helper: Simple Intent Classifier ---
def simple_intent_classifier(query):
query_lower = query.lower()
if any(k in query_lower for k in ["order", "status", "track", "delivery"]):
# More specific regex to find 'ORD' followed by digits (assuming order IDs are like ORD1001)
match = re.search(r'\b(ord\d{3,})\b', query_lower) # Matches 'ord' followed by at least 3 digits, as a whole word
if match:
return "ORDER_STATUS", match.group(1).upper() # Return intent and extracted ID
# Fallback if specific order ID not found but still an order-related query
return "ORDER_STATUS", None # Indicate order status intent but no specific ID found yet
if any(k in query_lower for k in ["product", "item", "buy", "price", "feature", "stock"]): return "PRODUCT_INFO", None
if any(k in query_lower for k in ["return", "policy", "refund", "exchange", "faq", "question", "how to", "support"]): return "GENERAL_POLICY_FAQ", None
return "UNKNOWN", None # Return intent and None for ID if unknown
# --- Main Application Controls ---
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button("🚀 Start App", disabled=st.session_state.app_started, use_container_width=True):
if not groq_api_key_to_use: # Use the correct variable
st.error("GROQ API Key is required.")
else:
with st.spinner("Initializing RAG pipeline..."):
st.session_state.embedding_model = initialize_embedding_model(embedding_model_name_to_use) # Use correct var
st.session_state.customer_orders_data = load_json_data(CUSTOMER_ORDERS_FILE)
st.session_state.products_data = load_json_data(PRODUCTS_FILE)
policy_pdf_pages = load_pdf_data(POLICY_PDF_FILE)
faq_pdf_pages = load_pdf_data(FAQ_PDF_FILE)
all_pdf_text_pages = policy_pdf_pages + faq_pdf_pages
st.session_state.pdf_text_chunks_raw = chunk_text(all_pdf_text_pages)
if st.session_state.embedding_model and st.session_state.pdf_text_chunks_raw:
st.session_state.faiss_index_pdfs, st.session_state.indexed_pdf_chunks = \
create_faiss_index(st.session_state.pdf_text_chunks_raw, st.session_state.embedding_model)
else:
st.session_state.faiss_index_pdfs, st.session_state.indexed_pdf_chunks = None, []
st.warning("FAISS index for PDFs could not be created.")
st.session_state.groq_client = initialize_groq_client(groq_api_key_to_use) # Use correct var
if st.session_state.embedding_model and st.session_state.groq_client and \
st.session_state.customer_orders_data and st.session_state.products_data:
st.session_state.rag_pipeline_ready = True
st.session_state.app_started = True
st.success("RAG Application Started!")
st.rerun()
else:
st.error("Failed to initialize RAG pipeline. Check configurations and ensure all data files are present in 'docs/'.")
st.session_state.app_started = False
with col2:
if st.button("🛑 Stop App", disabled=not st.session_state.app_started, use_container_width=True):
keys_to_reset = ["app_started", "bot_started", "rag_pipeline_ready", "embedding_model",
"customer_orders_data", "products_data", "pdf_text_chunks_raw",
"faiss_index_pdfs", "indexed_pdf_chunks", "groq_client", "twilio_client",
"bot_start_time_utc", "processed_message_sids", "manual_chat_history"]
for key in keys_to_reset:
if key in st.session_state: del st.session_state[key]
st.session_state.app_started = False
st.session_state.bot_started = False
st.session_state.rag_pipeline_ready = False
st.session_state.processed_message_sids = set()
st.session_state.manual_chat_history = []
st.success("Application Stopped.")
st.rerun()
with col3:
if st.button("💬 Start WhatsApp Bot", disabled=not st.session_state.app_started or st.session_state.bot_started, use_container_width=True):
if not all([twilio_account_sid_to_use, twilio_auth_token_to_use, twilio_conversation_service_sid_to_use, twilio_bot_whatsapp_identity_to_use]): # Use correct vars
st.error("Twilio credentials, Service SID, and Bot Identity are required.")
else:
st.session_state.twilio_client = initialize_twilio_client(twilio_account_sid_to_use, twilio_auth_token_to_use) # Use correct vars
if st.session_state.twilio_client:
st.session_state.bot_started = True
st.session_state.bot_start_time_utc = datetime.now(timezone.utc)
st.session_state.processed_message_sids = set()
st.session_state.last_twilio_poll_time = time.time() - polling_interval_to_use -1 # Use correct var
st.success("WhatsApp Bot Started!")
st.rerun()
else:
st.error("Failed to initialize Twilio client.")
with col4:
if st.button("🔕 Stop WhatsApp Bot", disabled=not st.session_state.bot_started, use_container_width=True):
st.session_state.bot_started = False
st.info("WhatsApp Bot Stopped.")
st.rerun()
st.divider()
# --- Manual Query Interface ---
if st.session_state.get("app_started") and st.session_state.get("rag_pipeline_ready"):
st.subheader("💬 Manual Query")
for chat_entry in st.session_state.manual_chat_history:
with st.chat_message(chat_entry["role"]):
st.markdown(chat_entry["content"])
if "context" in chat_entry and chat_entry["context"]:
with st.expander("Retrieved Context"):
try:
# Attempt to parse as JSON only if it looks like a JSON string
if isinstance(chat_entry["context"], str) and (chat_entry["context"].strip().startswith('{') or chat_entry["context"].strip().startswith('[')):
st.json(json.loads(chat_entry["context"]))
else:
# Otherwise, display as plain text
st.text(str(chat_entry["context"]))
except (json.JSONDecodeError, TypeError):
# Fallback for any other parsing errors
st.text(str(chat_entry["context"]))
user_query_manual = st.chat_input("Ask a question:")
if user_query_manual:
st.session_state.manual_chat_history.append({"role": "user", "content": user_query_manual})
with st.chat_message("user"): st.markdown(user_query_manual)
with st.spinner("Thinking..."):
intent_result = simple_intent_classifier(user_query_manual) # Get both intent and potential_id
intent = intent_result[0]
potential_oid_from_intent = intent_result[1] # This is the extracted ID if any
context_for_llm, raw_context_data = "No specific context.", None
if intent == "ORDER_STATUS":
order_id_to_check = None
if potential_oid_from_intent:
order_id_to_check = potential_oid_from_intent
else:
# Fallback for edge cases, though the regex should catch most
words = user_query_manual.upper().split()
# This regex specifically looks for 'ORD' followed by digits
possible_match = next((w for w in words if re.match(r'ORD\d+', w)), None)
if possible_match:
order_id_to_check = possible_match
if order_id_to_check:
raw_context_data = get_order_details(order_id_to_check.upper(), st.session_state.customer_orders_data)
context_for_llm = f"Order Details: {raw_context_data}"
else:
context_for_llm = "Please provide a valid Order ID (e.g., ORD1234)."
raw_context_data = {"message": "Order ID needed."}
elif intent == "PRODUCT_INFO":
raw_context_data = get_product_info(user_query_manual, st.session_state.products_data)
context_for_llm = f"Product Information: {raw_context_data}"
elif intent == "GENERAL_POLICY_FAQ" or intent == "UNKNOWN":
# ... (rest of your existing logic for these intents) ...
if st.session_state.faiss_index_pdfs and st.session_state.embedding_model:
k_val = 2 if intent == "GENERAL_POLICY_FAQ" else 1
retrieved_chunks = search_faiss_index(st.session_state.faiss_index_pdfs, user_query_manual,
st.session_state.embedding_model, st.session_state.indexed_pdf_chunks, k=k_val)
if retrieved_chunks:
context_for_llm = "\n\n".join(retrieved_chunks)
raw_context_data = retrieved_chunks
else:
context_for_llm = "No specific policy/FAQ info found." if intent == "GENERAL_POLICY_FAQ" else "Could not find relevant info."
raw_context_data = {"message": "No relevant PDF chunks found."}
else:
context_for_llm = "Policy/FAQ documents unavailable."
raw_context_data = {"message": "PDF index not ready."}
llm_response = generate_response_groq(st.session_state.groq_client, user_query_manual, context_for_llm)
with st.chat_message("assistant"):
st.markdown(llm_response)
if raw_context_data:
with st.expander("Retrieved Context"):
try:
if isinstance(raw_context_data, str) and (raw_context_data.strip().startswith('{') or raw_context_data.strip().startswith('[')):
st.json(json.loads(raw_context_data))
else:
st.text(str(raw_context_data))
except (json.JSONDecodeError, TypeError):
st.text(str(raw_context_data))
st.session_state.manual_chat_history.append({"role": "assistant", "content": llm_response, "context": raw_context_data})
# --- Twilio Bot Polling Logic ---
if st.session_state.get("bot_started") and st.session_state.get("rag_pipeline_ready"):
current_time = time.time()
if (current_time - st.session_state.get("last_twilio_poll_time", 0)) > polling_interval_to_use: # Use correct var
st.session_state.last_twilio_poll_time = current_time
with st.spinner("Checking WhatsApp messages..."):
if not st.session_state.get("twilio_client") or not twilio_conversation_service_sid_to_use or not twilio_bot_whatsapp_identity_to_use: # Use correct vars
st.warning("Twilio client/config missing for polling.")
else:
new_messages = get_new_whatsapp_messages(st.session_state.twilio_client, twilio_conversation_service_sid_to_use,
st.session_state.bot_start_time_utc, st.session_state.processed_message_sids,
twilio_bot_whatsapp_identity_to_use) # Use correct vars
if new_messages:
st.info(f"Found {len(new_messages)} new WhatsApp message(s).")
for msg_data in new_messages:
user_query_whatsapp, conv_sid, msg_sid, author_id = msg_data["message_body"], msg_data["conversation_sid"], msg_data["message_sid"], msg_data["author_identity"]
st.write(f"Processing from {author_id} in {conv_sid}: '{user_query_whatsapp}'")
intent_result_whatsapp = simple_intent_classifier(user_query_whatsapp) # Use the updated classifier
intent_whatsapp = intent_result_whatsapp[0]
potential_oid_whatsapp = intent_result_whatsapp[1] # Extracted ID from intent classifier
context_whatsapp = "No specific context."
if intent_whatsapp == "ORDER_STATUS":
order_id_to_check_whatsapp = None
if potential_oid_whatsapp:
order_id_to_check_whatsapp = potential_oid_whatsapp
else:
words_whatsapp = user_query_whatsapp.upper().split()
possible_match_whatsapp = next((w for w in words_whatsapp if re.match(r'ORD\d+', w)), None)
if possible_match_whatsapp:
order_id_to_check_whatsapp = possible_match_whatsapp
if order_id_to_check_whatsapp:
context_whatsapp = f"Order Details: {get_order_details(order_id_to_check_whatsapp.upper(), st.session_state.customer_orders_data)}"
else:
context_whatsapp = "Please provide a valid Order ID."
elif intent_whatsapp == "PRODUCT_INFO":
context_whatsapp = f"Product Info: {get_product_info(user_query_whatsapp, st.session_state.products_data)}"
elif intent_whatsapp == "GENERAL_POLICY_FAQ" or intent_whatsapp == "UNKNOWN":
if st.session_state.faiss_index_pdfs and st.session_state.embedding_model:
k_val = 2 if intent_whatsapp == "GENERAL_POLICY_FAQ" else 1
chunks = search_faiss_index(st.session_state.faiss_index_pdfs, user_query_whatsapp, st.session_state.embedding_model, st.session_state.indexed_pdf_chunks, k=k_val)
context_whatsapp = "\n\n".join(chunks) if chunks else ("No policy/FAQ info." if intent_whatsapp == "GENERAL_POLICY_FAQ" else "No relevant info.")
else: context_whatsapp = "Policy/FAQ docs unavailable."
response_whatsapp = generate_response_groq(st.session_state.groq_client, user_query_whatsapp, context_whatsapp)
if send_whatsapp_message(st.session_state.twilio_client, twilio_conversation_service_sid_to_use, conv_sid, response_whatsapp, twilio_bot_whatsapp_identity_to_use): # Use correct vars
st.session_state.processed_message_sids.add(msg_sid)
st.success(f"Responded to {msg_sid} from {author_id}")
else: st.error(f"Failed to send response for {msg_sid}")
st.experimental_rerun()
# --- Footer & Status ---
st.sidebar.markdown("---")
st.sidebar.info("Ensure all keys and SIDs are correctly configured. Primary API keys (Twilio SID/Token, GROQ Key) are loaded from secrets if available.")
if st.session_state.get("app_started"):
st.sidebar.success(f"App RUNNING. WhatsApp Bot {'RUNNING' if st.session_state.get('bot_started') else 'STOPPED'}.")
else:
st.sidebar.warning("App is STOPPED.") |