Spaces:
Sleeping
Sleeping
File size: 19,678 Bytes
a29e958 f4e7b4f a29e958 3f46408 70f965e a29e958 3f46408 a29e958 70f965e a29e958 2e93654 3f46408 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 70f965e a29e958 70f965e a29e958 70f965e ef85737 a29e958 70f965e a29e958 70f965e a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 ef85737 a29e958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import streamlit as st
import os
import glob
from dotenv import load_dotenv
import time
import threading
from twilio.rest import Client # Import Twilio client
from langchain_community.document_loaders import (
PyPDFLoader,
Docx2txtLoader,
UnstructuredExcelLoader,
JSONLoader,
UnstructuredFileLoader # Generic loader, good for tables
)
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
# --- Configuration ---
# --- Moved groq_api_key here ---
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")
# groq_api_key = ""
DOCS_DIR = "docs"
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
CACHE_DIR = ".streamlit_cache"
GENERAL_QA_PROMPT = """
You are an AI assistant for our internal knowledge base.
Your goal is to provide accurate and concise answers based ONLY on the provided context.
Do not make up information. If the answer is not found in the context, state that clearly.
Ensure your answers are directly supported by the text.
Accuracy is paramount.
Context:
{context}
Question: {question}
Answer:
"""
ORDER_STATUS_PROMPT = """
You are an AI assistant helping with customer order inquiries.
Based ONLY on the following retrieved information from our order system and policies:
{context}
The customer's query is: {question}
Please perform the following steps:
1. Carefully analyze the context for any order details (Order ID, Customer Name, Status, Items, Dates, etc.).
2. If an order matching the query (or related to a name in the query) is found in the context:
- Address the customer by their name if available in the order details (e.g., "Hello [Customer Name],").
- Provide ALL available information about their order, including Order ID, status, items, dates, and any other relevant details found in the context.
- Be comprehensive and clear.
3. If no specific order details are found in the context that match the query, politely state that you couldn't find the specific order information in the provided documents and suggest they contact support for further assistance.
4. Do NOT invent or infer any information not explicitly present in the context.
Answer:
"""
MONITOR_INTERVAL_SECONDS = 30 # Add the constant for the monitoring interval
APP_START_TIME = time.time()
# Twilio Configuration (Add your Twilio credentials here)
account_sid = os.getenv("TWILIO_ACCOUNT_SID")
auth_token = os.getenv("TWILIO_AUTH_TOKEN")
twilio_number = os.getenv("TWILIO_PHONE_NUMBER") # Your Twilio phone number
# Create docs and cache directory if they don't exist
if not os.path.exists(DOCS_DIR):
os.makedirs(DOCS_DIR)
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
# --- Helper Function for Document Loading ---
def get_loader(file_path):
"""Detects file type and returns appropriate Langchain loader."""
_, ext = os.path.splitext(file_path)
ext = ext.lower()
# Prioritize UnstructuredFileLoader for robust table and content extraction
# UnstructuredFileLoader can handle many types, but we can specify if needed
if ext in ['.pdf', '.docx', '.doc', '.xlsx', '.xls', '.json', '.txt', '.md', '.html', '.xml', '.eml', '.msg']:
return UnstructuredFileLoader(file_path, mode="elements", strategy="fast") # "elements" is good for tables
# Fallback or specific loaders if UnstructuredFileLoader has issues with a particular file
# elif ext == ".pdf":
# return PyPDFLoader(file_path) # Basic PDF loader
# elif ext in [".docx", ".doc"]:
# return Docx2txtLoader(file_path) # Basic DOCX loader
# elif ext in [".xlsx", ".xls"]:
# return UnstructuredExcelLoader(file_path, mode="elements") # Unstructured for Excel
# elif ext == ".json":
# return JSONLoader(file_path, jq_schema='.[]', text_content=False) # Adjust jq_schema as needed
else:
st.warning(f"Unsupported file type: {ext}. Skipping {os.path.basename(file_path)}")
return None
# --- Caching Functions ---
@st.cache_resource(show_spinner=False) # Disable spinner during initial load
def load_and_process_documents(docs_path: str):
"""
Loads documents from the specified path, processes them, and splits into chunks.
Uses UnstructuredFileLoader for potentially better table extraction.
"""
documents = []
doc_files = []
for ext in ["*.pdf", "*.docx", "*.xlsx", "*.json", "*.txt", "*.md"]:
doc_files.extend(glob.glob(os.path.join(docs_path, ext)))
if not doc_files:
st.error(f"No documents found in the '{docs_path}' directory. Please add some documents.")
st.info("Supported formats: .pdf, .docx, .xlsx, .json, .txt, .md")
return []
for file_path in doc_files:
try:
print(f"Processing: {os.path.basename(file_path)}...") # Show progress
loader = get_loader(file_path)
if loader:
loaded_docs = loader.load()
# Add source metadata to each document for better traceability
for doc in loaded_docs:
doc.metadata["source"] = os.path.basename(file_path)
documents.extend(loaded_docs)
except Exception as e:
st.error(f"Error loading {os.path.basename(file_path)}: {e}")
st.warning(f"Skipping file {os.path.basename(file_path)} due to error.")
if not documents:
st.error("No documents were successfully loaded or processed.")
return []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunked_documents = text_splitter.split_documents(documents)
if not chunked_documents:
st.error("Document processing resulted in no text chunks. Check document content and parsing.")
return []
st.success(f"Successfully loaded and processed {len(doc_files)} documents into {len(chunked_documents)} chunks.")
return chunked_documents
@st.cache_resource(show_spinner=False) # Disable spinner during initial load
def create_vector_store(_documents, _embedding_model_name: str):
"""Creates a FAISS vector store from the given documents and embedding model."""
if not _documents:
st.warning("Cannot create vector store: No documents processed.")
return None
try:
embeddings = HuggingFaceEmbeddings(model_name=_embedding_model_name)
vector_store = FAISS.from_documents(_documents, embedding=embeddings)
st.success("Vector Store created successfully!")
return vector_store
except Exception as e:
st.error(f"Error creating vector store: {e}")
# Return an empty FAISS instance instead of None to prevent the AttributeError.
embeddings = HuggingFaceEmbeddings(model_name=_embedding_model_name) # Initialize embeddings
vector_store = FAISS.from_documents([], embeddings) # Changed from None to FAISS.from_documents
return vector_store
@st.cache_resource(show_spinner=False) # Disable spinner during initial load
def get_llm(api_key: str, model_name: str = "llama3-8b-8192"): # UPDATED MODEL
"""Initializes the Groq LLM."""
if not api_key:
st.error("GROQ_API_KEY not found! Please set it in your environment variables or a .env file.")
return None
try:
# Available models (check Groq documentation for the latest):
# "llama3-8b-8192" (good balance of speed and capability)
# "llama3-70b-8192" (more powerful, potentially slower)
# "gemma-7b-it"
llm = ChatGroq(temperature=0, groq_api_key=api_key, model_name=model_name)
st.sidebar.info(f"LLM Initialized: {model_name}") # Add info about which model is used
return llm
except Exception as e:
st.error(f"Error initializing Groq LLM: {e}")
return None
# --- RAG Chain Setup ---
def get_rag_chain(llm, retriever, prompt_template):
"""Creates the Retrieval QA chain."""
prompt = PromptTemplate.from_template(prompt_template)
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return rag_chain
# --- Twilio Helper Functions ---
def send_twilio_message(client, conversation_sid, message):
"""Sends a message to a Twilio Conversation."""
try:
client.conversations.v1.conversations(conversation_sid).messages.create(
author="Internal Knowledge Base AI", # Or some identifier
body=message,
)
except Exception as e:
print(f"β Error sending Twilio message: {e}")
def fetch_latest_incoming_message(client, conversation_sid):
"""Fetches the latest incoming message from a conversation."""
try:
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=1)
for msg in messages:
if msg.direction == "inbound":
return {
"body": msg.body,
"author": msg.author,
"timestamp": msg.date_created
}
return None # No incoming message found
except Exception as e:
print(f"β Error fetching latest message: {e}")
return None
def poll_conversation(convo_sid, rag_chain, client):
"""Polls a single conversation for new messages and responds."""
last_processed_timestamp = {}
while True:
try:
latest_msg = fetch_latest_incoming_message(client, convo_sid)
if latest_msg:
msg_time = latest_msg["timestamp"]
if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
last_processed_timestamp[convo_sid] = msg_time
question = latest_msg["body"]
sender = latest_msg["author"]
print(f"\nπ₯ New message from {sender} in {convo_sid}: {question}")
# context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
# answer = generate_answer_with_groq(question, context)
try:
if "order" in question.lower() and (
"status" in question.lower() or "track" in question.lower() or "update" in question.lower() or any(
name_part.lower() in question.lower() for name_part in ["customer", "client", "name"])):
answer = rag_chain.invoke(question, config={'prompt': ORDER_STATUS_PROMPT})
else:
answer = rag_chain.invoke(question, config={'prompt': GENERAL_QA_PROMPT})
send_twilio_message(client, convo_sid, answer)
print(f"π€ Replied to {sender}: {answer}")
except Exception as e:
print(f"β Error during RAG chain invocation: {e}")
answer = "Sorry, I encountered an error while processing your request."
send_twilio_message(client, convo_sid, answer)
time.sleep(3) # Reduced polling interval
except Exception as e:
print(f"β Error in convo {convo_sid} polling:", e)
time.sleep(5)
def poll_new_conversations(client, vector_store, llm):
"""Polls for new conversations and starts monitoring them."""
processed_convos = set()
print("β‘οΈ Monitoring for new WhatsApp conversations...")
rag_chain = get_rag_chain(llm, vector_store.as_retriever(search_kwargs={"k": 5}), GENERAL_QA_PROMPT)
while True:
try:
conversations = client.conversations.v1.conversations.list(limit=20) # Adjust limit as needed
for convo in conversations:
convo_full = client.conversations.v1.conversations(convo.sid).fetch()
if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
participants = client.conversations.v1.conversations(convo.sid).participants.list()
for p in participants:
address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
if address.startswith("whatsapp:"):
print(f"π New WhatsApp convo found: {convo.sid}")
processed_convos.add(convo.sid)
threading.Thread(target=poll_conversation, args=(convo.sid, rag_chain, client),
daemon=True).start()
except Exception as e:
print("β Error polling conversations:", e)
time.sleep(MONITOR_INTERVAL_SECONDS) # Use the defined interval
def start_conversation_monitor(client, vector_store, llm):
"""Starts the conversation monitoring process."""
# Launch the new conversation polling in a separate thread
threading.Thread(target=poll_new_conversations, args=(client, vector_store, llm),
daemon=True).start()
print("π’ WhatsApp monitoring started.") # Add a message
# --- Main Application Logic ---
def main():
# --- UI Setup ---
st.set_page_config(page_title="Internal Knowledge Base AI", layout="wide", initial_sidebar_state="expanded")
# Custom CSS (remains the same)
st.markdown("""
<style>
.reportview-container .main .block-container{
padding-top: 2rem;
padding-bottom: 2rem;
}
.st-emotion-cache-z5fcl4 {
padding-top: 1rem;
}
.response-area {
background-color: #f0f2f6;
padding: 15px;
border-radius: 5px;
margin-top: 10px;
}
</style>
""", unsafe_allow_html=True)
st.title("π Internal Knowledge Base AI π‘")
st.sidebar.header("System Status")
status_placeholder = st.sidebar.empty()
status_placeholder.info("Initializing...")
if not groq_api_key:
status_placeholder.error("GROQ API Key not configured. Application cannot start.")
st.stop()
# --- Initialize session state ---
if "app_initialized" not in st.session_state:
st.session_state.app_initialized = False
# --- Start Button ---
if not st.session_state.app_initialized:
if st.button("Start"): # Create a start button
st.session_state.app_initialized = True # set the session state to true
st.rerun() # Rerun the app to trigger the knowledge base loading
# --- Knowledge Base Loading and LLM Initialization ---
if st.session_state.app_initialized: # only run if the app has been initialized
with st.spinner("Knowledge Base is loading... Please wait."):
start_time = time.time()
processed_documents = load_and_process_documents(DOCS_DIR)
if not processed_documents:
status_placeholder.error("Failed to load or process documents. Check logs and `docs` folder.")
st.stop()
vector_store = create_vector_store(processed_documents, EMBEDDING_MODEL_NAME)
if not vector_store:
status_placeholder.error("Failed to create vector store. Application cannot proceed.")
st.stop()
# Pass the selected model to get_llm
llm = get_llm(groq_api_key, model_name="llama3-8b-8192") # Hardcoded to use llama3-8b-8192
if not llm:
# Error is already shown by get_llm, but update status_placeholder too
status_placeholder.error("Failed to initialize LLM. Application cannot proceed.")
st.stop()
end_time = time.time()
# status_placeholder is updated by get_llm or on success below
status_placeholder.success(f"Application Ready! (Loaded in {end_time - start_time:.2f}s)")
# --- Initialize Twilio Client and Start Monitoring ---
if account_sid and auth_token and twilio_number:
try:
client = Client(account_sid, auth_token)
# Start the conversation monitor in a separate thread
start_conversation_monitor(client, vector_store, llm)
st.success("π’ Monitoring new WhatsApp conversations...")
st.info("β³ Waiting for new messages...")
except Exception as e:
status_placeholder.error(f"Failed to initialize Twilio: {e}. Check your credentials and network.")
st.stop()
else:
st.warning("Twilio credentials not fully configured. WhatsApp monitoring is disabled.")
# --- Query Input and Response ---
st.markdown("---")
st.subheader("Ask a question about our documents:")
if "messages" not in st.session_state:
st.session_state.messages = []
query = st.text_input("Enter your question:", key="query_input",
placeholder="e.g., 'What is the return policy?' or 'Status of order for John Doe?'")
if st.button("Submit", key="submit_button"):
if query:
st.session_state.messages.append({"role": "user", "content": query})
current_model_info = st.sidebar.empty() # Placeholder for current mode info
if "order" in query.lower() and (
"status" in query.lower() or "track" in query.lower() or "update" in query.lower() or any(
name_part.lower() in query.lower() for name_part in ["customer", "client", "name"])):
active_prompt_template = ORDER_STATUS_PROMPT
current_model_info.info("Mode: Order Status Query")
else:
active_prompt_template = GENERAL_QA_PROMPT
current_model_info.info("Mode: General Query")
rag_chain = get_rag_chain(llm, vector_store.as_retriever(search_kwargs={"k": 5}), active_prompt_template)
with st.spinner("Thinking..."):
try:
response = rag_chain.invoke(query)
st.session_state.messages.append({"role": "assistant", "content": response})
except Exception as e:
st.error(f"Error during RAG chain invocation: {e}")
response = "Sorry, I encountered an error while processing your request."
st.session_state.messages.append({"role": "assistant", "content": response})
else:
st.warning("Please enter a question.")
st.markdown("---")
st.subheader("Response:")
response_area = st.container()
# Ensure response_area is robust against empty messages or incorrect last role
last_assistant_message = "Ask a question to see the answer here."
if st.session_state.messages and st.session_state.messages[-1]['role'] == 'assistant':
last_assistant_message = st.session_state.messages[-1]['content']
response_area.markdown(f"<div class='response-area'>{last_assistant_message}</div>",
unsafe_allow_html=True)
st.sidebar.markdown("---")
st.sidebar.markdown("Built with β€οΈ using Streamlit & Langchain & Groq")
if __name__ == "__main__":
main()
|