File size: 9,340 Bytes
f4e7b4f
c832d1c
 
 
 
 
 
 
 
 
 
d186b8d
c832d1c
 
 
d765f67
c832d1c
 
 
c99b5df
 
f4e7b4f
c832d1c
 
 
c99b5df
c832d1c
 
 
 
 
 
d765f67
 
c832d1c
 
d765f67
c832d1c
 
f4e7b4f
c832d1c
 
 
d765f67
c832d1c
 
 
 
d765f67
c832d1c
d765f67
 
f4e7b4f
c832d1c
 
 
 
d765f67
 
c832d1c
 
f4e7b4f
d765f67
 
 
c832d1c
 
 
 
d765f67
c832d1c
 
c99b5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d765f67
 
c832d1c
 
 
 
 
d765f67
 
 
c832d1c
 
 
 
d765f67
 
c832d1c
 
d765f67
d186b8d
 
 
 
 
 
 
 
 
c99b5df
d186b8d
 
 
 
 
 
 
 
d765f67
 
d186b8d
 
 
 
 
 
 
c832d1c
 
 
 
d765f67
c832d1c
d186b8d
c832d1c
 
 
 
 
 
 
 
 
 
d765f67
c832d1c
 
 
 
 
 
 
d765f67
c832d1c
 
 
 
c99b5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c832d1c
 
 
 
d765f67
c832d1c
 
 
 
 
d765f67
c832d1c
 
 
 
d765f67
c832d1c
d765f67
 
 
 
 
 
 
 
 
 
 
c832d1c
 
d765f67
 
 
 
c832d1c
d765f67
c99b5df
d765f67
 
c832d1c
 
d765f67
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import requests
from io import StringIO
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams
from twilio.base.exceptions import TwilioRestException
import pdfplumber
import datetime
import csv
import json
import re

APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
os.environ["PYTORCH_JIT"] = "0"

# ---------------- PDF & DOCX & JSON Extraction ----------------
def _extract_tables_from_page(page):
    tables = page.extract_tables()
    formatted_tables = []
    for table in tables:
        formatted_table = []
        for row in table:
            formatted_row = [cell if cell is not None else "" for cell in row]
            formatted_table.append(formatted_row)
        formatted_tables.append(formatted_table)
    return formatted_tables

def extract_text_from_pdf(pdf_path):
    text_output = StringIO()
    all_tables = []
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for page in pdf.pages:
                all_tables.extend(_extract_tables_from_page(page))
                text = page.extract_text()
                if text:
                    text_output.write(text + "\n\n")
    except Exception as e:
        print(f"pdfplumber error: {e}")
        with open(pdf_path, 'rb') as file:
            extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
    return text_output.getvalue(), all_tables

def _format_tables_internal(tables):
    formatted_tables_str = []
    for table in tables:
        with StringIO() as csvfile:
            writer = csv.writer(csvfile)
            writer.writerows(table)
            formatted_tables_str.append(csvfile.getvalue())
    return "\n\n".join(formatted_tables_str)

def clean_extracted_text(text):
    return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())

def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        return '\n'.join(para.text for para in doc.paragraphs)
    except:
        return ""

def load_json_data(json_path):
    try:
        with open(json_path, 'r', encoding='utf-8') as f:
            data = json.load(f)
        if isinstance(data, dict):
            # Flatten dictionary values (avoiding nested structures as strings)
            return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
        elif isinstance(data, list):
            # Flatten list of dictionaries
            all_items = []
            for item in data:
                if isinstance(item, dict):
                    all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
            return "\n\n".join(all_items)
        else:
            return json.dumps(data, ensure_ascii=False, indent=2)
    except Exception as e:
        print(f"JSON read error: {e}")
        return ""

# ---------------- Chunking ----------------
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
    tokens = tokenizer.tokenize(text)
    chunks = []
    start = 0
    while start < len(tokens):
        end = min(start + chunk_size, len(tokens))
        chunk = tokens[start:end]
        chunks.append(tokenizer.convert_tokens_to_string(chunk))
        if end == len(tokens): break
        start += chunk_size - chunk_overlap
    return chunks

def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
    q_embedding = embed_model.encode(question)
    D, I = index.search(np.array([q_embedding]), k)
    return [text_chunks[i] for i in I[0]]

# ---------------- Groq Answer Generator ----------------
def generate_answer_with_groq(question, context):
    url = "https://api.groq.com/openai/v1/chat/completions"
    api_key = os.environ.get("GROQ_API_KEY")
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }
    prompt = (
        f"Customer asked: '{question}'\n\n"
        f"Here is the relevant information to help:\n{context}\n\n"
        f"Respond in a friendly and helpful tone as a toy shop support agent."
    )
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": (
                    "You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
                    "Help customers with toys, delivery, and returns in a helpful tone."
                )
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.5,
        "max_tokens": 300,
    }
    response = requests.post(url, headers=headers, json=payload)
    response.raise_for_status()
    return response.json()['choices'][0]['message']['content'].strip()

# ---------------- Twilio Integration ----------------
def fetch_latest_incoming_message(client, conversation_sid):
    try:
        messages = client.conversations.v1.conversations(conversation_sid).messages.list()
        for msg in reversed(messages):
            if msg.author.startswith("whatsapp:"):
                return {
                    "sid": msg.sid,
                    "body": msg.body,
                    "author": msg.author,
                    "timestamp": msg.date_created,
                }
    except TwilioRestException as e:
        print(f"Twilio error: {e}")
    return None

def send_twilio_message(client, conversation_sid, body):
    return client.conversations.v1.conversations(conversation_sid).messages.create(
        author="system", body=body
    )

# ---------------- Knowledge Base Setup ----------------
def setup_knowledge_base():
    folder_path = "docs"
    all_text = ""

    for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)
        if filename.endswith(".pdf"):
            text, tables = extract_text_from_pdf(file_path)
            all_text += clean_extracted_text(text) + "\n"
            all_text += _format_tables_internal(tables) + "\n"
        elif filename.endswith(".docx"):
            text = extract_text_from_docx(file_path)
            all_text += clean_extracted_text(text) + "\n"
        elif filename.endswith(".json"):
            text = load_json_data(file_path)
            all_text += text + "\n"
        elif filename.endswith(".csv"):
            try:
                with open(file_path, newline='', encoding='utf-8') as csvfile:
                    reader = csv.DictReader(csvfile)
                    for row in reader:
                        line = ' | '.join(f"{k}: {v}" for k, v in row.items())
                        all_text += line + "\n"
            except Exception as e:
                print(f"CSV read error: {e}")

    tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
    chunks = chunk_text(all_text, tokenizer)
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(chunks, show_progress_bar=False)
    dim = embeddings[0].shape[0]
    index = faiss.IndexFlatL2(dim)
    index.add(np.array(embeddings).astype('float32'))
    return index, model, chunks

# ---------------- Monitor Twilio Conversations ----------------
def start_conversation_monitor(client, index, embed_model, text_chunks):
    processed_convos = set()
    last_processed_timestamp = {}

    def poll_convo(convo_sid):
        while True:
            latest_msg = fetch_latest_incoming_message(client, convo_sid)
            if latest_msg:
                msg_time = latest_msg["timestamp"]
                if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
                    last_processed_timestamp[convo_sid] = msg_time
                    question = latest_msg["body"]
                    sender = latest_msg["author"]
                    print(f"πŸ“© New message from {sender}: {question}")
                    context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
                    answer = generate_answer_with_groq(question, context)
                    send_twilio_message(client, convo_sid, answer)
            time.sleep(5)

    for convo in client.conversations.v1.conversations.list():
        if convo.sid not in processed_convos:
            processed_convos.add(convo.sid)
            threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()

# ---------------- Main Entry ----------------
if __name__ == "__main__":
    st.title("πŸ€– ToyBot WhatsApp Assistant")
    st.write("Initializing knowledge base...")

    index, model, chunks = setup_knowledge_base()

    st.success("Knowledge base loaded.")
    st.write("Waiting for WhatsApp messages...")

    account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
    auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
    if not account_sid or not auth_token:
        st.error("❌ Twilio credentials not set.")
    else:
        client = Client(account_sid, auth_token)
        start_conversation_monitor(client, index, model, chunks)
        st.info("βœ… Bot is now monitoring Twilio conversations.")