Spaces:
Sleeping
Sleeping
File size: 4,145 Bytes
36c0c0f b02d98a 1b72738 b02d98a 4dbf41f b02d98a 85e6257 36c0c0f 0b8ee3b 12fd03c 0b8ee3b 85e6257 ab4f2f9 8a8a6d6 85e6257 b02d98a 8a8a6d6 85e6257 8a8a6d6 b02d98a 013dd9f 1b72738 013dd9f 1b72738 013dd9f 1b72738 8a8a6d6 013dd9f 8a8a6d6 013dd9f d899598 013dd9f b02d98a 013dd9f b02d98a 013dd9f 85e6257 b02d98a 1b72738 013dd9f 1b72738 b02d98a 8a8a6d6 1b72738 36c0c0f 1b72738 013dd9f 1b72738 8a8a6d6 013dd9f 8a8a6d6 013dd9f 8a8a6d6 013dd9f 1b72738 013dd9f 1b72738 013dd9f 1b72738 013dd9f 4dbf41f 013dd9f 1b72738 12a98fd 1b72738 36c0c0f 1b72738 013dd9f 36c0c0f 1b72738 8a8a6d6 1b72738 013dd9f 1b72738 013dd9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import os
import json
import pdfplumber
import faiss
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
from openai import OpenAI
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Setup GROQ client
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
# Constants
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
LLM_MODEL = "llama3-8b-8192"
embedder = SentenceTransformer(EMBEDDING_MODEL)
# Streamlit UI
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
st.title("π§Έ ToyShop RAG-Based Assistant")
def extract_pdf_text(file):
text = ""
with pdfplumber.open(file) as pdf:
for page in pdf.pages:
content = page.extract_text()
if content:
text += content + "\n"
return text.strip()
def flatten_order(order):
flat = []
if isinstance(order, dict):
for k, v in order.items():
if isinstance(v, (dict, list)):
flat.append(f"{k}: {json.dumps(v, ensure_ascii=False)}")
else:
flat.append(f"{k}: {v}")
return "\n".join(flat)
def load_json_orders(json_file):
try:
data = json.load(json_file)
if isinstance(data, dict):
orders = list(data.values())
elif isinstance(data, list):
orders = data
else:
return []
valid_orders = [o for o in orders if isinstance(o, dict)]
return valid_orders
except Exception as e:
st.error(f"β Error parsing JSON: {e}")
return []
def build_index(chunks):
vectors = embedder.encode(chunks)
index = faiss.IndexFlatL2(vectors.shape[1])
index.add(np.array(vectors))
return index, chunks
def ask_llm(context, query):
prompt = f"""You are a helpful assistant for an online toy shop.
Knowledge base:
{context}
Question: {query}
"""
response = client.chat.completions.create(
model=LLM_MODEL,
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
# Uploads
st.subheader("π Upload Customer Orders (JSON)")
orders_file = st.file_uploader("Upload JSON file", type="json")
st.subheader("π Upload FAQs / Product Info / Return Policy (PDFs)")
pdf_files = st.file_uploader("Upload one or more PDFs", type="pdf", accept_multiple_files=True)
order_chunks, pdf_chunks = [], []
# Handle JSON orders
if orders_file:
orders = load_json_orders(orders_file)
if orders:
order_chunks = [flatten_order(o) for o in orders]
st.success(f"β
Loaded {len(order_chunks)} valid orders.")
try:
df = pd.json_normalize(orders)
st.dataframe(df, use_container_width=True)
except Exception:
st.warning("β οΈ Unable to normalize JSON. Showing raw preview.")
st.json(orders)
# Handle PDFs
if pdf_files:
for file in pdf_files:
try:
text = extract_pdf_text(file)
pdf_chunks.extend(text.split("\n\n"))
st.success(f"π Processed: {file.name}")
except Exception as e:
st.error(f"β Error in {file.name}: {e}")
# Combine & build index
combined_chunks = order_chunks + pdf_chunks
if combined_chunks:
index, sources = build_index(combined_chunks)
st.subheader("β Ask a Question")
user_query = st.text_input("What would you like to know?", placeholder="e.g., What is the status of order 105?")
if user_query:
query_vector = embedder.encode([user_query])
D, I = index.search(query_vector, k=5)
context = "\n---\n".join([sources[i] for i in I[0]])
with st.spinner("π€ Thinking..."):
try:
answer = ask_llm(context, user_query)
st.markdown("### π§ Answer")
st.write(answer)
except Exception as e:
st.error(f"β GROQ Error: {e}")
else:
st.info("π Please upload orders (JSON) and info files (PDF) to get started.")
|