Spaces:
Sleeping
Sleeping
File size: 5,088 Bytes
36c0c0f b02d98a 1b72738 b02d98a 4dbf41f b02d98a 85e6257 36c0c0f 0b8ee3b 12fd03c 0b8ee3b 85e6257 ab4f2f9 8a8a6d6 85e6257 b02d98a 8a8a6d6 85e6257 8a8a6d6 b02d98a 8a8a6d6 1b72738 8a8a6d6 1b72738 12fd03c 1b72738 d899598 8a8a6d6 d899598 3cdab77 d899598 8a8a6d6 d899598 8a8a6d6 d899598 1b72738 4dbf41f b02d98a 4dbf41f b02d98a 3cdab77 85e6257 b02d98a 3cdab77 1b72738 8a8a6d6 1b72738 b02d98a 8a8a6d6 1b72738 36c0c0f 1b72738 8a8a6d6 1b72738 8a8a6d6 1b72738 3cdab77 8a8a6d6 3cdab77 8a8a6d6 1b72738 3cdab77 8a8a6d6 1b72738 4dbf41f 1b72738 12a98fd 8a8a6d6 1b72738 36c0c0f 1b72738 8a8a6d6 36c0c0f 1b72738 3cdab77 1b72738 3cdab77 1b72738 8a8a6d6 1b72738 3cdab77 1b72738 8a8a6d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit as st
import os
import json
import tempfile
import pdfplumber
import faiss
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
from openai import OpenAI
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Setup GROQ client
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
# Constants
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
LLM_MODEL = "llama3-8b-8192"
embedder = SentenceTransformer(EMBEDDING_MODEL)
# Streamlit app setup
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
st.title("π§Έ ToyShop RAG-Based Assistant")
# --- Helper functions ---
def extract_pdf_text(file):
text = ""
with pdfplumber.open(file) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text.strip()
def load_json_orders(json_file):
valid_orders = []
try:
data = json.load(json_file)
if isinstance(data, list):
for i, order in enumerate(data):
try:
json.dumps(order) # test serialization
valid_orders.append(order)
except Exception as e:
st.warning(f"β οΈ Skipping invalid order at index {i}: {e}")
elif isinstance(data, dict):
for k, order in data.items():
try:
json.dumps(order)
valid_orders.append(order)
except Exception as e:
st.warning(f"β οΈ Skipping invalid order with key '{k}': {e}")
except Exception as e:
st.error(f"β Error parsing JSON file: {e}")
return valid_orders
def build_index(text_chunks):
vectors = embedder.encode(text_chunks)
index = faiss.IndexFlatL2(vectors.shape[1])
index.add(np.array(vectors))
return index, text_chunks
def ask_llm(context, query):
prompt = (
f"You are a helpful assistant for an online toy shop.\n\n"
f"Knowledge base:\n{context}\n\n"
f"Question: {query}"
)
# For debugging: show the prompt being sent.
st.expander("Prompt to LLM").code(prompt)
response = client.chat.completions.create(
model=LLM_MODEL,
messages=[{"role": "user", "content": prompt}]
)
# Log full response for inspection (can be commented out in production)
st.expander("Raw LLM API Response").json(response)
return response.choices[0].message.content.strip()
# --- File upload section ---
st.subheader("π Upload Customer Orders (JSON)")
orders_file = st.file_uploader("Upload JSON file", type="json")
st.subheader("π Upload FAQs / Product Info / Return Policy (PDFs)")
pdf_files = st.file_uploader("Upload one or more PDFs", type="pdf", accept_multiple_files=True)
order_chunks, pdf_chunks = [], []
# --- Process JSON ---
if orders_file:
orders = load_json_orders(orders_file)
if orders:
order_chunks = [json.dumps(order, ensure_ascii=False) for order in orders]
st.success(f"β
Loaded {len(order_chunks)} customer order records.")
# Attempt to flatten for viewing
try:
df = pd.json_normalize(orders)
st.dataframe(df, use_container_width=True)
except Exception:
st.warning("β οΈ Nested JSON detected. Showing raw JSON preview instead.")
st.json(orders)
else:
st.error("No valid orders found in the JSON file.")
# --- Process PDFs ---
if pdf_files:
for pdf_file in pdf_files:
try:
text = extract_pdf_text(pdf_file)
# Split into paragraphs (non-empty lines)
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
pdf_chunks.extend(paragraphs)
st.success(f"π Processed {pdf_file.name}")
except Exception as e:
st.error(f"β Failed to read {pdf_file.name}: {e}")
combined_chunks = order_chunks + pdf_chunks
# --- Question Answering Section ---
if combined_chunks:
index, sources = build_index(combined_chunks)
st.subheader("β Ask a Question")
user_query = st.text_input("What would you like to know?", placeholder="e.g. What is the status of order 123?")
if user_query:
query_vector = embedder.encode([user_query])
D, I = index.search(query_vector, k=5)
# Prepare context from the top-K results:
context = "\n---\n".join([sources[i] for i in I[0]])
st.expander("Combined Context").code(context)
with st.spinner("π€ Thinking..."):
try:
answer = ask_llm(context, user_query)
st.markdown("### π§ Answer")
# Use st.write() to render the answer as text.
st.write(answer)
except Exception as e:
st.error(f"β GROQ API Error: {e}")
else:
st.info("π Please upload both JSON orders and relevant PDFs to begin.")
|