Spaces:
Sleeping
Sleeping
File size: 5,884 Bytes
36c0c0f b02d98a 1b72738 b02d98a 4dbf41f 92d0c75 b02d98a 85e6257 36c0c0f 0b8ee3b 12fd03c 0b8ee3b 85e6257 ab4f2f9 8a8a6d6 85e6257 b02d98a 8a8a6d6 85e6257 8a8a6d6 b02d98a 013dd9f 1b72738 92d0c75 1b72738 013dd9f 1b72738 0831006 013dd9f 0831006 92d0c75 0831006 013dd9f 0831006 1b72738 8a8a6d6 013dd9f 8a8a6d6 013dd9f d899598 013dd9f b02d98a 013dd9f b02d98a 013dd9f 85e6257 b02d98a 1b72738 92d0c75 1b72738 b02d98a 8a8a6d6 1b72738 36c0c0f 1b72738 92d0c75 1b72738 92d0c75 1b72738 8a8a6d6 013dd9f 8a8a6d6 013dd9f 8a8a6d6 92d0c75 1b72738 013dd9f 1b72738 013dd9f 1b72738 013dd9f 4dbf41f 92d0c75 1b72738 12a98fd 1b72738 36c0c0f 1b72738 013dd9f 36c0c0f 1b72738 92d0c75 1b72738 8a8a6d6 1b72738 013dd9f 1b72738 013dd9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
import os
import json
import pdfplumber
import faiss
import numpy as np
import pandas as pd
import re
from sentence_transformers import SentenceTransformer
from openai import OpenAI
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Setup GROQ client
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
# Constants
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
LLM_MODEL = "llama3-8b-8192"
embedder = SentenceTransformer(EMBEDDING_MODEL)
# Streamlit UI
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
st.title("π§Έ ToyShop RAG-Based Assistant")
# --- Helper Functions ---
def extract_pdf_text(file):
text = ""
with pdfplumber.open(file) as pdf:
for page in pdf.pages:
content = page.extract_text()
if content:
text += content + "\n"
return text.strip()
# Replace only the following functions from your current app.py
def flatten_order(order):
flat = []
if isinstance(order, dict):
for k, v in order.items():
if isinstance(v, (dict, list)):
flat.append(f"{k}: {json.dumps(v, ensure_ascii=False)}")
else:
flat.append(f"{k}: {v}")
# Add a friendly natural language summary for the assistant
if "order_id" in order and "status" in order:
summary = f"""
Dear {order.get("customer_name", "Customer")},
Here are the complete details of your order **#{order['order_id']}**:
- **Status**: {order['status']}
- **Items**: {', '.join([item['name'] + ' (x' + str(item['quantity']) + ')' for item in order.get('items', [])]) if order.get('items') else 'Not available'}
- **Total**: {order.get('total', 'N/A')}
- **Date**: {order.get('date', 'N/A')}
- **Shipping Address**: {order.get('shipping_address', 'N/A')}
We hope this helps! Let us know if you need anything else.
Thanks for shopping with us! π
""".strip()
flat.append(summary)
return "\n".join(flat)
def get_order_by_id(orders, query):
match = re.search(r"order(?:_id)?\s*[:#]?\s*(\d+)", query)
if match:
oid = match.group(1)
for order in orders:
if str(order.get("order_id")) == oid:
return flatten_order(order)
return None
def load_json_orders(json_file):
try:
data = json.load(json_file)
if isinstance(data, dict):
orders = list(data.values())
elif isinstance(data, list):
orders = data
else:
return []
valid_orders = [o for o in orders if isinstance(o, dict)]
return valid_orders
except Exception as e:
st.error(f"β Error parsing JSON: {e}")
return []
def build_index(chunks):
vectors = embedder.encode(chunks)
index = faiss.IndexFlatL2(vectors.shape[1])
index.add(np.array(vectors))
return index, chunks
def ask_llm(context, query):
prompt = f"""You are a helpful assistant for an online toy shop.
Knowledge base:
{context}
Question: {query}
"""
response = client.chat.completions.create(
model=LLM_MODEL,
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
def preprocess_query(q):
return q.replace("order_id", "order").replace("_", " ")
def get_order_by_id(orders, query):
match = re.search(r"order(?:_id)?\s*[:#]?\s*(\d+)", query)
if match:
oid = match.group(1)
for order in orders:
if str(order.get("order_id")) == oid:
return flatten_order(order)
return None
# --- Uploads ---
st.subheader("π Upload Customer Orders (JSON)")
orders_file = st.file_uploader("Upload JSON file", type="json")
st.subheader("π Upload FAQs / Product Info / Return Policy (PDFs)")
pdf_files = st.file_uploader("Upload one or more PDFs", type="pdf", accept_multiple_files=True)
order_chunks, pdf_chunks = [], []
orders = []
# --- Handle JSON Orders ---
if orders_file:
orders = load_json_orders(orders_file)
if orders:
order_chunks = [flatten_order(o) for o in orders]
st.success(f"β
Loaded {len(order_chunks)} valid orders.")
try:
df = pd.json_normalize(orders)
st.dataframe(df, use_container_width=True)
except Exception:
st.warning("β οΈ Unable to normalize JSON. Showing raw preview.")
st.json(orders)
# --- Handle PDFs ---
if pdf_files:
for file in pdf_files:
try:
text = extract_pdf_text(file)
pdf_chunks.extend(text.split("\n\n"))
st.success(f"π Processed: {file.name}")
except Exception as e:
st.error(f"β Error in {file.name}: {e}")
# --- Build Index & Q&A ---
combined_chunks = order_chunks + pdf_chunks
if combined_chunks:
index, sources = build_index(combined_chunks)
st.subheader("β Ask a Question")
user_query = st.text_input("What would you like to know?", placeholder="e.g., What is the status of order 105?")
if user_query:
pre_q = preprocess_query(user_query)
direct_match = get_order_by_id(orders, user_query)
if direct_match:
context = direct_match
else:
query_vector = embedder.encode([pre_q])
D, I = index.search(query_vector, k=5)
context = "\n---\n".join([sources[i] for i in I[0]])
with st.spinner("π€ Thinking..."):
try:
answer = ask_llm(context, user_query)
st.markdown("### π§ Answer")
st.write(answer)
except Exception as e:
st.error(f"β GROQ Error: {e}")
else:
st.info("π Please upload orders (JSON) and info files (PDF) to get started.")
|