merve's picture
merve HF Staff
Create app.py
cdcd05b
raw
history blame
1.29 kB
import gradio as gr
from PIL import Image
def infer_segmentation(prompt, negative_prompt, image):
# implement your inference function here
im = Image.open("cat_image.jpeg")
return im
def infer_canny(prompt, negative_prompt, image):
# implement your inference function here
im = Image.open("cat_image.jpeg")
return im
with gr.Blocks() as demo:
gr.Markdown("## Stable Diffusion with Different Controls")
gr.Markdown("In this app, you can find different ControlNets with different filters. ")
input_list = [prompt_input, negative_prompt_input, image_input]
with gr.Tab("ControlNet on Canny Filter "):
prompt_input = gr.Textbox(label="Prompt")
negative_prompt_input = gr.Textbox(label="Negative Prompt")
image_input = gr.Image(label="Image")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=write_to_dataset, inputs=input_list, outputs="image")
with gr.Tab("ControlNet with Semantic Segmentation"):
prompt_input = gr.Textbox(label="Prompt")
negative_prompt_input = gr.Textbox(label="Negative Prompt")
image_input = gr.Image(label="Image")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=write_to_dataset, inputs=input_list, outputs="image")
demo.launch()