File size: 5,711 Bytes
9965499 c30e46a 96208dc c30e46a 08c0325 96208dc bc40121 c30e46a 96208dc c30e46a bc40121 c30e46a bc40121 c30e46a eaba1ed f400521 c30e46a 08c0325 3d539ca 96208dc bc40121 c30e46a 86771dc c30e46a bc40121 c30e46a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
"""
MedGenesis β dual-LLM orchestrator
----------------------------------
β’ Accepts llm = "openai" | "gemini" (falls back to OpenAI)
β’ Returns one unified dict the UI can rely on.
"""
from __future__ import annotations
import asyncio, itertools, logging
from typing import Dict, Any, List, Tuple
from mcp.arxiv import fetch_arxiv
from mcp.pubmed import fetch_pubmed
from mcp.ncbi import search_gene, get_mesh_definition
from mcp.mygene import fetch_gene_info
from mcp.ensembl import fetch_ensembl
from mcp.opentargets import fetch_ot
from mcp.umls import lookup_umls
from mcp.openfda import fetch_drug_safety
from mcp.disgenet import disease_to_genes
from mcp.clinicaltrials import search_trials
from mcp.cbio import fetch_cbio
from mcp.openai_utils import ai_summarize, ai_qa
from mcp.gemini import gemini_summarize, gemini_qa
log = logging.getLogger(__name__)
_DEF = "openai" # default engine
# βββββββββββββββββββββββββββββββββββ helpers βββββββββββββββββββββββββββββββββββ
def _llm_router(engine: str = _DEF) -> Tuple:
if engine.lower() == "gemini":
return gemini_summarize, gemini_qa, "gemini"
return ai_summarize, ai_qa, "openai"
async def _gather_safely(*aws, as_list: bool = True):
"""await gather() that converts Exception β RuntimeError placeholder"""
out = await asyncio.gather(*aws, return_exceptions=True)
if as_list:
# filter exceptions β keep structure but drop failures
return [x for x in out if not isinstance(x, Exception)]
return out
async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
jobs = []
for k in keys:
jobs += [
search_gene(k), # basic gene info
get_mesh_definition(k), # MeSH definitions
fetch_gene_info(k), # MyGene
fetch_ensembl(k), # Ensembl x-refs
fetch_ot(k), # Open Targets associations
]
res = await _gather_safely(*jobs, as_list=False)
# slice & compress five-way fan-out
combo = lambda idx: [r for i, r in enumerate(res) if i % 5 == idx and r]
return {
"ncbi" : combo(0),
"mesh" : combo(1),
"mygene" : combo(2),
"ensembl" : combo(3),
"ot_assoc" : combo(4),
}
# βββββββββββββββββββββββββββββββββ orchestrator ββββββββββββββββββββββββββββββββ
async def orchestrate_search(query: str, *, llm: str = _DEF) -> Dict[str, Any]:
"""Main entry β returns dict for the Streamlit UI"""
# 1 Literature β run in parallel
arxiv_task = asyncio.create_task(fetch_arxiv(query))
pubmed_task = asyncio.create_task(fetch_pubmed(query))
papers_raw = await _gather_safely(arxiv_task, pubmed_task)
papers = list(itertools.chain.from_iterable(papers_raw))[:30] # keep β€30
# 2 Keyword extraction (very light β only from abstracts)
kws = {w for p in papers for w in (p["summary"][:500].split()) if w.isalpha()}
kws = list(kws)[:10] # coarse, fast -> 10 seeds
# 3 Bio-enrichment fan-out
umls_f = [_safe_task(lookup_umls, k) for k in kws]
fda_f = [_safe_task(fetch_drug_safety, k) for k in kws]
gene_bundle = asyncio.create_task(_gene_enrichment(kws))
trials_task = asyncio.create_task(search_trials(query, max_studies=20))
cbio_task = asyncio.create_task(fetch_cbio(kws[0] if kws else ""))
umls, fda, gene_dat, trials, variants = await asyncio.gather(
_gather_safely(*umls_f),
_gather_safely(*fda_f),
gene_bundle,
trials_task,
cbio_task,
)
# 4 LLM summary
summarise_fn, _, engine = _llm_router(llm)
summary = await summarise_fn(" ".join(p["summary"] for p in papers)[:12000])
return {
"papers" : papers,
"umls" : umls,
"drug_safety" : fda,
"ai_summary" : summary,
"llm_used" : engine,
"genes" : gene_dat["ncbi"] + gene_dat["ensembl"] + gene_dat["mygene"],
"mesh_defs" : gene_dat["mesh"],
"gene_disease" : gene_dat["ot_assoc"],
"clinical_trials" : trials,
"variants" : variants or [],
}
# βββββββββββββββββββββββββββββββ follow-up QA βββββββββββββββββββββββββββββββββ
async def answer_ai_question(question: str, *, context: str, llm: str = _DEF) -> Dict[str, str]:
"""Follow-up QA using chosen LLM."""
_, qa_fn, _ = _llm_router(llm)
return {"answer": await qa_fn(f"Q: {question}\nContext: {context}\nA:")}
# βββββββββββββββββββββββββββ internal util βββββββββββββββββββββββββββββββββββ
def _safe_task(fn, *args):
"""Helper to wrap callable β Task returning RuntimeError on exception."""
async def _wrapper():
try:
return await fn(*args)
except Exception as exc:
log.warning("background task %s failed: %s", fn.__name__, exc)
return RuntimeError(str(exc))
return asyncio.create_task(_wrapper())
|