Spaces:
Sleeping
Sleeping
File size: 10,425 Bytes
aa5de1c 2bfad86 5c746f8 08839d3 5c746f8 08839d3 aa5de1c 5c746f8 2bfad86 5c746f8 2bfad86 5c746f8 aa5de1c 08839d3 2bfad86 08839d3 5c746f8 08839d3 2bfad86 aa5de1c 08839d3 fd51a26 2bfad86 5c746f8 6e34739 2bfad86 08839d3 2bfad86 08839d3 2bfad86 08839d3 aa5de1c 08839d3 2bfad86 08839d3 5c746f8 08839d3 5c746f8 08839d3 5c746f8 08839d3 5c746f8 08839d3 5c746f8 08839d3 5c746f8 08839d3 5c746f8 08839d3 5c746f8 08839d3 aa5de1c 08839d3 2bfad86 08839d3 aa5de1c 08839d3 2bfad86 08839d3 5c746f8 aa5de1c 08839d3 aa5de1c 2bfad86 5c746f8 08839d3 5c746f8 08839d3 aa5de1c 2bfad86 08839d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import os
import json
import time
import random
import subprocess
from pathlib import Path
import google.generativeai as genai
from tavily import TavilyClient
from runwayml import RunwayML, TaskFailedError
from PIL import Image, ImageDraw, ImageFont
# =============================================================
# AI VIDEO STUDIO (Gen-4 Turbo ImageโVideo compliant rewrite)
# =============================================================
# Key changes:
# 1. Added *required* prompt_image for Gen-4 / gen4_turbo image_to_video tasks (was missing -> error).
# 2. Added UI input for an optional user keyframe image; if absent we auto-generate a placeholder.
# 3. Included prompt_text together with prompt_image for better guidance.
# 4. Added more robust polling / retry & explicit exception surfaces.
# 5. Added structured logging + deterministic temp directory per job.
# 6. Wrapped cleanup in finally; kept mock VO approach.
# 7. Added basic safety guardrails.
#
# Gen-4 requires an input image plus text prompt (cannot be pure text alone) โ if you want pure text-to-video, switch to Gen-3 Alpha text mode. See docs.
# =============================================================
# --- 1. CONFIGURE API KEYS ---
try:
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
RUNWAY_API_KEY = os.environ["RUNWAY_API_KEY"]
runway_client = RunwayML(api_key=RUNWAY_API_KEY)
except KeyError as e:
raise ValueError(f"API Key Error: Please set the {e} secret in your environment.")
# --- 2. CONSTANTS / SETTINGS ---
GEN4_MODEL = "gen4_turbo" # adjust to "gen4" if you prefer (slower / potentially higher fidelity)
SCENE_COUNT = 4
SCENE_DURATION_SECONDS = 5 # Gen-4 supports 5 or 10 seconds
VIDEO_RATIO = "1280:720" # 16:9
WORDS_PER_SEC = 2.5 # Used for mock narration length
MAX_POLL_SECONDS = 180 # Per scene
POLL_INTERVAL = 5
# --- 3. UTILITIES ---
def _log(msg: str):
print(f"[AI-STUDIO] {msg}")
def create_placeholder_image(text: str, path: Path, size=(1280, 720)) -> Path:
"""Create a simple placeholder keyframe if user supplies none.
You can later replace this with a real text-to-image generation step."""
img = Image.new("RGB", size, (10, 10, 10))
draw = ImageDraw.Draw(img)
try:
font = ImageFont.truetype("DejaVuSans-Bold.ttf", 60)
except Exception:
font = ImageFont.load_default()
wrapped = []
line = ""
for word in text.split():
test = f"{line} {word}".strip()
if len(test) > 28: # naive wrap
wrapped.append(line)
line = word
else:
line = test
if line:
wrapped.append(line)
y = size[1] // 2 - (len(wrapped) * 35) // 2
for w in wrapped:
w_width, w_height = draw.textsize(w, font=font)
draw.text(((size[0]-w_width)//2, y), w, fill=(240, 240, 240), font=font)
y += w_height + 10
img.save(path)
return path
def generate_mock_voiceover(narration: str, out_path: Path):
duration = len(narration.split()) / WORDS_PER_SEC
subprocess.run([
'ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono',
'-t', str(duration), '-q:a', '9', '-acodec', 'libmp3lame', str(out_path), '-y'
], check=True)
return duration
def poll_runway_task(task_obj, max_seconds=MAX_POLL_SECONDS, interval=POLL_INTERVAL):
start = time.time()
while True:
task_obj.refresh()
status = task_obj.status
if status == 'SUCCEEDED':
return task_obj
if status == 'FAILED':
raise TaskFailedError(task_details=task_obj)
if time.time() - start > max_seconds:
raise TimeoutError(f"Runway task timed out after {max_seconds}s (status={status})")
time.sleep(interval)
# --- 4. CORE PIPELINE ---
def generate_video_from_topic(topic_prompt, keyframe_image, progress=gr.Progress(track_tqdm=True)):
job_id = f"{int(time.time())}_{random.randint(1000, 9999)}"
_log(f"Starting job {job_id} :: topic='{topic_prompt}'")
# Working directory for this job
workdir = Path(f"job_{job_id}")
workdir.mkdir(exist_ok=True)
intermediates = []
try:
# STEP 1: Research
progress(0.05, desc="๐ Researching topic ...")
facts = "No research data available."
try:
research_results = tavily_client.search(
query=f"Key facts and interesting points about {topic_prompt}",
search_depth="basic"
)
if research_results and 'results' in research_results:
facts = "\n".join([res['content'] for res in research_results['results']])
except Exception as e:
_log(f"Tavily failed: {e}")
# STEP 2: Script
progress(0.15, desc="โ๏ธ Writing script ...")
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
script_prompt = f"""
You are a creative director for viral short-form videos.
Topic: {topic_prompt}
Research (may contain noise):\n{facts}\n\n
Produce JSON with keys:
narration_script: overall narration (concise, energetic, ~85-110 words per 5 scenes). Maintain coherence.
scene_prompts: list of {SCENE_COUNT} *visual* prompts. Each should be cinematic, 1-2 sentences, include style / camera / lighting cues and keep characters consistent.
Return ONLY JSON.
"""
response = gemini_model.generate_content(script_prompt)
try:
cleaned = response.text.strip().replace("```json", "").replace("```", "")
data = json.loads(cleaned)
narration = data['narration_script']
scene_prompts = data['scene_prompts']
if len(scene_prompts) != SCENE_COUNT:
raise ValueError(f"Expected {SCENE_COUNT} scene prompts, got {len(scene_prompts)}")
except Exception as e:
raise gr.Error(f"Gemini JSON parse error: {e}. Raw: {response.text[:400]}")
# STEP 3: Mock VO
progress(0.25, desc="๐๏ธ Generating mock VO ...")
audio_path = workdir / f"narration_{job_id}.mp3"
generate_mock_voiceover(narration, audio_path)
intermediates.append(audio_path)
# STEP 4: Prepare keyframe image (required for Gen-4 image_to_video)
progress(0.30, desc="๐ผ๏ธ Preparing keyframe image ...")
if keyframe_image is not None:
keyframe_path = Path(keyframe_image)
else:
keyframe_path = workdir / "auto_keyframe.png"
create_placeholder_image(topic_prompt, keyframe_path)
intermediates.append(keyframe_path)
# STEP 5: Generate scenes
clip_paths = []
for idx, scene_prompt in enumerate(scene_prompts, start=1):
base_progress = 0.30 + (idx * 0.12)
progress(min(base_progress, 0.85), desc=f"๐ฌ Scene {idx}/{len(scene_prompts)} ...")
_log(f"Submitting scene {idx}: {scene_prompt[:90]}...")
try:
task = runway_client.image_to_video.create(
model=GEN4_MODEL,
prompt_image=str(keyframe_path), # required param
prompt_text=scene_prompt,
duration=SCENE_DURATION_SECONDS,
ratio=VIDEO_RATIO,
)
task = poll_runway_task(task)
video_url = task.output[0]
except TaskFailedError as e:
raise gr.Error(f"Runway failed scene {idx}: {getattr(e, 'task_details', 'No details')}")
# Download clip
clip_path = workdir / f"scene_{idx}.mp4"
r = runway_client._session.get(video_url, stream=True)
with open(clip_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk: f.write(chunk)
clip_paths.append(clip_path)
intermediates.append(clip_path)
_log(f"Downloaded scene {idx} -> {clip_path}")
# STEP 6: Concatenate video
progress(0.90, desc="โ๏ธ Concatenating scenes ...")
list_file = workdir / "clips.txt"
with open(list_file, 'w') as lf:
for p in clip_paths:
lf.write(f"file '{p}'\n")
intermediates.append(list_file)
concat_path = workdir / f"concat_{job_id}.mp4"
subprocess.run([
'ffmpeg', '-f', 'concat', '-safe', '0', '-i', str(list_file), '-c', 'copy', str(concat_path), '-y'
], check=True)
intermediates.append(concat_path)
# STEP 7: Mux audio
final_path = workdir / f"final_{job_id}.mp4"
progress(0.95, desc="๐ Merging audio ...")
subprocess.run([
'ffmpeg', '-i', str(concat_path), '-i', str(audio_path), '-c:v', 'copy', '-c:a', 'aac', '-shortest', str(final_path), '-y'
], check=True)
progress(1.0, desc="โ
Done")
_log(f"FINAL VIDEO: {final_path}")
return str(final_path)
except Exception as e:
_log(f"JOB {job_id} FAILED: {e}")
raise gr.Error(f"An error occurred: {e}")
finally:
# Keep workdir for debugging; comment out next block to remove entire directory
pass
# --- 5. GRADIO UI ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐ค My Personal AI Video Studio (Gen-4 Turbo)")
gr.Markdown("Enter a topic and (optionally) upload a keyframe image. Without an image, a simple placeholder is generated.")
with gr.Row():
topic_input = gr.Textbox(label="Video Topic", placeholder="e.g., 'The history of coffee'", scale=3)
image_input = gr.Image(label="Keyframe Image (optional)", type="filepath")
with gr.Row():
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Row():
video_output = gr.Video(label="Generated Video")
generate_button.click(
fn=generate_video_from_topic,
inputs=[topic_input, image_input],
outputs=video_output
)
gr.Markdown("---\n### Tips\n- Supply a consistent character/style image for more coherent scenes.\n- For pure *text-only* generation, switch to a Gen-3 Alpha text-to-video flow (not implemented here).\n- Replace placeholder keyframe logic with a real T2I model for higher quality.")
if __name__ == "__main__":
demo.launch() |