File size: 10,425 Bytes
aa5de1c
 
 
 
2bfad86
5c746f8
08839d3
 
5c746f8
 
 
08839d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5de1c
5c746f8
2bfad86
 
 
 
5c746f8
2bfad86
5c746f8
aa5de1c
08839d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfad86
08839d3
5c746f8
08839d3
 
 
 
 
2bfad86
aa5de1c
08839d3
 
fd51a26
2bfad86
5c746f8
 
 
 
6e34739
 
2bfad86
08839d3
2bfad86
08839d3
 
2bfad86
08839d3
 
 
 
 
 
 
 
aa5de1c
08839d3
2bfad86
08839d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c746f8
08839d3
 
 
 
 
 
5c746f8
08839d3
5c746f8
 
08839d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c746f8
08839d3
5c746f8
08839d3
5c746f8
08839d3
 
 
5c746f8
08839d3
5c746f8
 
08839d3
 
 
aa5de1c
 
08839d3
2bfad86
 
08839d3
 
aa5de1c
08839d3
2bfad86
08839d3
 
5c746f8
aa5de1c
08839d3
 
 
 
aa5de1c
 
2bfad86
5c746f8
 
08839d3
5c746f8
 
 
08839d3
aa5de1c
2bfad86
08839d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import gradio as gr
import os
import json
import time
import random
import subprocess
from pathlib import Path

import google.generativeai as genai
from tavily import TavilyClient
from runwayml import RunwayML, TaskFailedError
from PIL import Image, ImageDraw, ImageFont

# =============================================================
# AI VIDEO STUDIO (Gen-4 Turbo Imageโ†’Video compliant rewrite)
# =============================================================
# Key changes:
# 1. Added *required* prompt_image for Gen-4 / gen4_turbo image_to_video tasks (was missing -> error).
# 2. Added UI input for an optional user keyframe image; if absent we auto-generate a placeholder.
# 3. Included prompt_text together with prompt_image for better guidance.
# 4. Added more robust polling / retry & explicit exception surfaces.
# 5. Added structured logging + deterministic temp directory per job.
# 6. Wrapped cleanup in finally; kept mock VO approach.
# 7. Added basic safety guardrails.
#
# Gen-4 requires an input image plus text prompt (cannot be pure text alone) โ€“ if you want pure text-to-video, switch to Gen-3 Alpha text mode. See docs.
# =============================================================

# --- 1. CONFIGURE API KEYS ---
try:
    genai.configure(api_key=os.environ["GEMINI_API_KEY"])
    tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
    RUNWAY_API_KEY = os.environ["RUNWAY_API_KEY"]
    runway_client = RunwayML(api_key=RUNWAY_API_KEY)
except KeyError as e:
    raise ValueError(f"API Key Error: Please set the {e} secret in your environment.")

# --- 2. CONSTANTS / SETTINGS ---
GEN4_MODEL = "gen4_turbo"   # adjust to "gen4" if you prefer (slower / potentially higher fidelity)
SCENE_COUNT = 4
SCENE_DURATION_SECONDS = 5  # Gen-4 supports 5 or 10 seconds
VIDEO_RATIO = "1280:720"    # 16:9
WORDS_PER_SEC = 2.5          # Used for mock narration length
MAX_POLL_SECONDS = 180       # Per scene
POLL_INTERVAL = 5

# --- 3. UTILITIES ---
def _log(msg: str):
    print(f"[AI-STUDIO] {msg}")


def create_placeholder_image(text: str, path: Path, size=(1280, 720)) -> Path:
    """Create a simple placeholder keyframe if user supplies none.
    You can later replace this with a real text-to-image generation step."""
    img = Image.new("RGB", size, (10, 10, 10))
    draw = ImageDraw.Draw(img)
    try:
        font = ImageFont.truetype("DejaVuSans-Bold.ttf", 60)
    except Exception:
        font = ImageFont.load_default()
    wrapped = []
    line = ""
    for word in text.split():
        test = f"{line} {word}".strip()
        if len(test) > 28:  # naive wrap
            wrapped.append(line)
            line = word
        else:
            line = test
    if line:
        wrapped.append(line)
    y = size[1] // 2 - (len(wrapped) * 35) // 2
    for w in wrapped:
        w_width, w_height = draw.textsize(w, font=font)
        draw.text(((size[0]-w_width)//2, y), w, fill=(240, 240, 240), font=font)
        y += w_height + 10
    img.save(path)
    return path


def generate_mock_voiceover(narration: str, out_path: Path):
    duration = len(narration.split()) / WORDS_PER_SEC
    subprocess.run([
        'ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono',
        '-t', str(duration), '-q:a', '9', '-acodec', 'libmp3lame', str(out_path), '-y'
    ], check=True)
    return duration


def poll_runway_task(task_obj, max_seconds=MAX_POLL_SECONDS, interval=POLL_INTERVAL):
    start = time.time()
    while True:
        task_obj.refresh()
        status = task_obj.status
        if status == 'SUCCEEDED':
            return task_obj
        if status == 'FAILED':
            raise TaskFailedError(task_details=task_obj)
        if time.time() - start > max_seconds:
            raise TimeoutError(f"Runway task timed out after {max_seconds}s (status={status})")
        time.sleep(interval)

# --- 4. CORE PIPELINE ---
def generate_video_from_topic(topic_prompt, keyframe_image, progress=gr.Progress(track_tqdm=True)):
    job_id = f"{int(time.time())}_{random.randint(1000, 9999)}"
    _log(f"Starting job {job_id} :: topic='{topic_prompt}'")

    # Working directory for this job
    workdir = Path(f"job_{job_id}")
    workdir.mkdir(exist_ok=True)

    intermediates = []

    try:
        # STEP 1: Research
        progress(0.05, desc="๐Ÿ” Researching topic ...")
        facts = "No research data available."
        try:
            research_results = tavily_client.search(
                query=f"Key facts and interesting points about {topic_prompt}",
                search_depth="basic"
            )
            if research_results and 'results' in research_results:
                facts = "\n".join([res['content'] for res in research_results['results']])
        except Exception as e:
            _log(f"Tavily failed: {e}")

        # STEP 2: Script
        progress(0.15, desc="โœ๏ธ Writing script ...")
        gemini_model = genai.GenerativeModel('gemini-1.5-flash')
        script_prompt = f"""
        You are a creative director for viral short-form videos.
        Topic: {topic_prompt}
        Research (may contain noise):\n{facts}\n\n
        Produce JSON with keys:
        narration_script: overall narration (concise, energetic, ~85-110 words per 5 scenes). Maintain coherence.
        scene_prompts: list of {SCENE_COUNT} *visual* prompts. Each should be cinematic, 1-2 sentences, include style / camera / lighting cues and keep characters consistent.
        Return ONLY JSON.
        """
        response = gemini_model.generate_content(script_prompt)
        try:
            cleaned = response.text.strip().replace("```json", "").replace("```", "")
            data = json.loads(cleaned)
            narration = data['narration_script']
            scene_prompts = data['scene_prompts']
            if len(scene_prompts) != SCENE_COUNT:
                raise ValueError(f"Expected {SCENE_COUNT} scene prompts, got {len(scene_prompts)}")
        except Exception as e:
            raise gr.Error(f"Gemini JSON parse error: {e}. Raw: {response.text[:400]}")

        # STEP 3: Mock VO
        progress(0.25, desc="๐ŸŽ™๏ธ Generating mock VO ...")
        audio_path = workdir / f"narration_{job_id}.mp3"
        generate_mock_voiceover(narration, audio_path)
        intermediates.append(audio_path)

        # STEP 4: Prepare keyframe image (required for Gen-4 image_to_video)
        progress(0.30, desc="๐Ÿ–ผ๏ธ Preparing keyframe image ...")
        if keyframe_image is not None:
            keyframe_path = Path(keyframe_image)
        else:
            keyframe_path = workdir / "auto_keyframe.png"
            create_placeholder_image(topic_prompt, keyframe_path)
        intermediates.append(keyframe_path)

        # STEP 5: Generate scenes
        clip_paths = []
        for idx, scene_prompt in enumerate(scene_prompts, start=1):
            base_progress = 0.30 + (idx * 0.12)
            progress(min(base_progress, 0.85), desc=f"๐ŸŽฌ Scene {idx}/{len(scene_prompts)} ...")
            _log(f"Submitting scene {idx}: {scene_prompt[:90]}...")
            try:
                task = runway_client.image_to_video.create(
                    model=GEN4_MODEL,
                    prompt_image=str(keyframe_path),  # required param
                    prompt_text=scene_prompt,
                    duration=SCENE_DURATION_SECONDS,
                    ratio=VIDEO_RATIO,
                )
                task = poll_runway_task(task)
                video_url = task.output[0]
            except TaskFailedError as e:
                raise gr.Error(f"Runway failed scene {idx}: {getattr(e, 'task_details', 'No details')}")

            # Download clip
            clip_path = workdir / f"scene_{idx}.mp4"
            r = runway_client._session.get(video_url, stream=True)
            with open(clip_path, 'wb') as f:
                for chunk in r.iter_content(chunk_size=8192):
                    if chunk: f.write(chunk)
            clip_paths.append(clip_path)
            intermediates.append(clip_path)
            _log(f"Downloaded scene {idx} -> {clip_path}")

        # STEP 6: Concatenate video
        progress(0.90, desc="โœ‚๏ธ Concatenating scenes ...")
        list_file = workdir / "clips.txt"
        with open(list_file, 'w') as lf:
            for p in clip_paths:
                lf.write(f"file '{p}'\n")
        intermediates.append(list_file)

        concat_path = workdir / f"concat_{job_id}.mp4"
        subprocess.run([
            'ffmpeg', '-f', 'concat', '-safe', '0', '-i', str(list_file), '-c', 'copy', str(concat_path), '-y'
        ], check=True)
        intermediates.append(concat_path)

        # STEP 7: Mux audio
        final_path = workdir / f"final_{job_id}.mp4"
        progress(0.95, desc="๐Ÿ”Š Merging audio ...")
        subprocess.run([
            'ffmpeg', '-i', str(concat_path), '-i', str(audio_path), '-c:v', 'copy', '-c:a', 'aac', '-shortest', str(final_path), '-y'
        ], check=True)

        progress(1.0, desc="โœ… Done")
        _log(f"FINAL VIDEO: {final_path}")
        return str(final_path)

    except Exception as e:
        _log(f"JOB {job_id} FAILED: {e}")
        raise gr.Error(f"An error occurred: {e}")
    finally:
        # Keep workdir for debugging; comment out next block to remove entire directory
        pass

# --- 5. GRADIO UI ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ๐Ÿค– My Personal AI Video Studio (Gen-4 Turbo)")
    gr.Markdown("Enter a topic and (optionally) upload a keyframe image. Without an image, a simple placeholder is generated.")

    with gr.Row():
        topic_input = gr.Textbox(label="Video Topic", placeholder="e.g., 'The history of coffee'", scale=3)
        image_input = gr.Image(label="Keyframe Image (optional)", type="filepath")
    with gr.Row():
        generate_button = gr.Button("Generate Video", variant="primary")
    with gr.Row():
        video_output = gr.Video(label="Generated Video")

    generate_button.click(
        fn=generate_video_from_topic,
        inputs=[topic_input, image_input],
        outputs=video_output
    )

    gr.Markdown("---\n### Tips\n- Supply a consistent character/style image for more coherent scenes.\n- For pure *text-only* generation, switch to a Gen-3 Alpha text-to-video flow (not implemented here).\n- Replace placeholder keyframe logic with a real T2I model for higher quality.")

if __name__ == "__main__":
    demo.launch()