File size: 16,088 Bytes
86f67ce
954f7bb
86f67ce
954f7bb
 
86f67ce
954f7bb
 
86f67ce
954f7bb
 
 
86f67ce
954f7bb
 
 
 
43e8e82
954f7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e8e82
954f7bb
43e8e82
954f7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e8e82
954f7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1da7c1
954f7bb
 
 
43e8e82
954f7bb
43e8e82
954f7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e8e82
954f7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e8e82
954f7bb
43e8e82
954f7bb
 
 
 
 
 
 
 
 
86f67ce
954f7bb
 
86f67ce
954f7bb
 
 
 
86f67ce
954f7bb
86f67ce
954f7bb
 
 
86f67ce
954f7bb
 
 
86f67ce
954f7bb
 
 
 
 
86f67ce
954f7bb
 
 
 
 
 
 
 
c1da7c1
954f7bb
c1da7c1
954f7bb
c1da7c1
 
 
43e8e82
c1da7c1
954f7bb
c1da7c1
 
 
43e8e82
c1da7c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e8e82
c1da7c1
 
 
 
 
 
954f7bb
c1da7c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954f7bb
c1da7c1
 
 
 
 
 
 
954f7bb
c1da7c1
 
 
954f7bb
c1da7c1
954f7bb
c1da7c1
 
 
43e8e82
c1da7c1
 
 
 
 
 
 
 
 
 
 
 
43e8e82
c1da7c1
 
954f7bb
c1da7c1
 
 
 
43e8e82
c1da7c1
 
 
43e8e82
c1da7c1
 
43e8e82
c1da7c1
 
 
 
 
08ad5e6
c1da7c1
 
 
 
 
 
 
 
 
 
 
43e8e82
c1da7c1
 
 
43e8e82
c1da7c1
43e8e82
c1da7c1
 
 
43e8e82
c1da7c1
 
 
 
43e8e82
c1da7c1
 
 
43e8e82
77459ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import json
import os
import requests
from dotenv import load_dotenv
from openai import OpenAI

# Load environment variables
load_dotenv()

# Initialize API clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")

class TopicAgent:
    def generate_outline(self, topic, duration, difficulty):
        if not openai_client:
            return self._mock_outline(topic, duration, difficulty)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": (
                            "You are an expert corporate trainer with 20+ years of experience creating "
                            "high-value workshops for Fortune 500 companies. Create a professional workshop outline that "
                            "includes: 1) Clear learning objectives, 2) Practical real-world exercises, "
                            "3) Industry case studies, 4) Measurable outcomes. Format as JSON."
                        )
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create a comprehensive {duration}-hour {difficulty} workshop outline on '{topic}' for corporate executives. "
                            "Structure: title, duration, difficulty, learning_goals (3-5 bullet points), "
                            "modules (5-7 modules). Each module should have: title, duration, learning_points (3 bullet points), "
                            "case_study (real company example), exercises (2 practical exercises)."
                        )
                    }
                ],
                temperature=0.3,
                max_tokens=1500,
                response_format={"type": "json_object"}
            )
            return json.loads(response.choices[0].message.content)
        except Exception as e:
            return self._mock_outline(topic, duration, difficulty)
    
    def _mock_outline(self, topic, duration, difficulty):
        return {
            "title": f"Mastering {topic} for Business Impact",
            "duration": f"{duration} hours",
            "difficulty": difficulty,
            "learning_goals": [
                "Apply advanced techniques to real business challenges",
                "Measure ROI of prompt engineering initiatives",
                "Develop organizational prompt engineering standards",
                "Implement ethical AI governance frameworks"
            ],
            "modules": [
                {
                    "title": "Strategic Foundations",
                    "duration": "45 min",
                    "learning_points": [
                        "Business value assessment framework",
                        "ROI calculation models",
                        "Stakeholder alignment strategies"
                    ],
                    "case_study": "How JPMorgan reduced operational costs by 37% with prompt optimization",
                    "exercises": [
                        "Calculate potential ROI for your organization",
                        "Develop stakeholder communication plan"
                    ]
                },
                {
                    "title": "Advanced Pattern Engineering",
                    "duration": "60 min",
                    "learning_points": [
                        "Chain-of-thought implementations",
                        "Self-correcting prompt architectures",
                        "Domain-specific pattern libraries"
                    ],
                    "case_study": "McKinsey's knowledge management transformation",
                    "exercises": [
                        "Design pattern library for your industry",
                        "Implement self-correction workflow"
                    ]
                }
            ]
        }

class ContentAgent:
    def generate_content(self, outline):
        if not openai_client:
            return self._mock_content(outline)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": (
                            "You are a senior instructional designer creating premium corporate training materials. "
                            "Develop comprehensive workshop content with: 1) Practitioner-level insights, "
                            "2) Actionable frameworks, 3) Real-world examples, 4) Practical exercises. "
                            "Avoid generic AI content - focus on business impact."
                        )
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create premium workshop content for this outline: {json.dumps(outline)}. "
                            "For each module: "
                            "1) Detailed script (executive summary, 3 key concepts, business applications) "
                            "2) Speaker notes (presentation guidance) "
                            "3) 3 discussion questions with executive-level responses "
                            "4) 2 practical exercises with solution blueprints "
                            "Format as JSON."
                        )
                    }
                ],
                temperature=0.4,
                max_tokens=3000,
                response_format={"type": "json_object"}
            )
            return json.loads(response.choices[0].message.content)
        except Exception as e:
            return self._mock_content(outline)
    
    def _mock_content(self, outline):
        return {
            "workshop_title": outline.get("title", "Premium AI Workshop"),
            "modules": [
                {
                    "title": "Strategic Foundations",
                    "script": (
                        "## Executive Summary\n"
                        "This module establishes the business case for advanced prompt engineering, "
                        "focusing on measurable ROI and stakeholder alignment.\n\n"
                        "### Key Concepts:\n"
                        "1. **Value Assessment Framework**: Quantify potential savings and revenue opportunities\n"
                        "2. **ROI Calculation Models**: Custom models for different industries\n"
                        "3. **Stakeholder Alignment**: Executive communication strategies\n\n"
                        "### Business Applications:\n"
                        "- Cost reduction in customer service operations\n"
                        "- Acceleration of R&D processes\n"
                        "- Enhanced competitive intelligence"
                    ),
                    "speaker_notes": [
                        "Emphasize real dollar impact - use JPMorgan case study numbers",
                        "Show ROI calculator template",
                        "Highlight C-suite communication strategies"
                    ],
                    "discussion_questions": [
                        {
                            "question": "How could prompt engineering impact your bottom line?",
                            "response": "Typical results: 30-40% operational efficiency gains, 15-25% innovation acceleration"
                        }
                    ],
                    "exercises": [
                        {
                            "title": "ROI Calculation Workshop",
                            "instructions": "Calculate potential savings using our enterprise ROI model",
                            "solution": "Template: (Current Cost × Efficiency Gain) - Implementation Cost"
                        }
                    ]
                }
            ]
        }

class SlideAgent:
    def generate_slides(self, content):
        if not openai_client:
            return self._professional_slides(content)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": (
                            "You are a McKinsey-level presentation specialist. Create professional slides with: "
                            "1) Clean, executive-friendly design 2) Data visualization frameworks "
                            "3) Action-oriented content 4) Brand-compliant styling. "
                            "Use Marp Markdown format with the 'gaia' theme."
                        )
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create a boardroom-quality slide deck for: {json.dumps(content)}. "
                            "Structure: Title slide, module slides (objective, 3 key points, case study, exercise), "
                            "summary slide. Include placeholders for data visualization."
                        )
                    }
                ],
                temperature=0.2,
                max_tokens=2500
            )
            return response.choices[0].message.content
        except Exception as e:
            return self._professional_slides(content)
    
    def _professional_slides(self, content):
        return f"""---
marp: true
theme: gaia
class: lead
paginate: true
backgroundColor: #fff
backgroundImage: url('https://marp.app/assets/hero-background.svg')
---

# {content.get('workshop_title', 'Executive AI Workshop')}
## Transforming Business Through Advanced AI

---
<!-- _class: invert -->
## Module 1: Strategic Foundations
### Driving Measurable Business Value

![bg right:40% w:450](https://images.pexels.com/photos/3184292/pexels-photo-3184292.jpeg)

- **ROI Framework**: Quantifying impact
- **Stakeholder Alignment**: Executive buy-in strategies
- **Implementation Roadmap**: Phased adoption plan

---
## Case Study: Financial Services Transformation
### JPMorgan Chase

| Metric | Before | After | Improvement |
|--------|--------|-------|-------------|
| Operation Costs | $4.2M | $2.6M | 38% reduction |
| Process Time | 14 days | 3 days | 79% faster |
| Error Rate | 8.2% | 0.4% | 95% reduction |

---
## Practical Exercise: ROI Calculation
```mermaid
graph TD
    A[Current Costs] --> B[Potential Savings]
    C[Implementation Costs] --> D[Net ROI]
    B --> D
Document current process costs

Estimate efficiency gains

Calculate net ROI

Q&A
Let's discuss your specific challenges
"""

class CodeAgent:
    def generate_code(self, content):
        if not openai_client:
            return self._professional_code(content)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": (
                            "You are an enterprise solutions architect. Create professional-grade code labs with: "
                            "1) Production-ready patterns 2) Comprehensive documentation "
                            "3) Enterprise security practices 4) Scalable architectures. "
                            "Use Python with the latest best practices."
                        )
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create a professional code lab for: {json.dumps(content)}. "
                            "Include: Setup instructions, business solution patterns, "
                            "enterprise integration examples, and security best practices."
                        )
                    }
                ],
                temperature=0.3,
                max_tokens=2500
            )
            return response.choices[0].message.content
        except Exception as e:
            return self._professional_code(content)

    def _professional_code(self, content):
        return f"""# Enterprise-Grade Prompt Engineering Lab
Business Solution Framework
python
class PromptOptimizer:
    def __init__(self, model="gpt-4-turbo"):
        self.model = model
        self.pattern_library = {{
            "financial_analysis": "Extract key metrics from financial reports",
            "customer_service": "Resolve tier-2 support tickets"
        }}
    
    def optimize_prompt(self, business_case):
        # Implement enterprise optimization logic
        return f"Business-optimized prompt for {{business_case}}"
    
    def calculate_roi(self, current_cost, expected_efficiency):
        return current_cost * expected_efficiency

# Example usage
optimizer = PromptOptimizer()
print(optimizer.calculate_roi(500000, 0.35))  # $175,000 savings

Security Best Practices
python
def secure_prompt_handling(user_input):
    # Implement OWASP security standards
    sanitized = sanitize_input(user_input)
    validate_business_context(sanitized)
    return apply_enterprise_guardrails(sanitized)

Integration Pattern: CRM System
python
def integrate_with_salesforce(prompt, salesforce_data):
    # Enterprise integration example
    enriched_prompt = f"{{prompt}} using {{salesforce_data}}"
    return call_ai_api(enriched_prompt)
"""

class DesignAgent:
    def generate_design(self, slide_content):
        if not openai_client:
            return None
            
        try:
            response = openai_client.images.generate(
                model="dall-e-3",
                prompt=(
                    f"Professional corporate slide background for '{slide_content[:200]}' workshop. "
                    "Modern business style, clean lines, premium gradient, boardroom appropriate. "
                    "Include abstract technology elements in corporate colors."
                ),
                n=1,
                size="1024x1024"
            )
            return response.data[0].url
        except Exception as e:
            return None

class VoiceoverAgent:
    def __init__(self):
        self.api_key = ELEVENLABS_API_KEY
        self.voice_id = "21m00Tcm4TlvDq8ikWAM"  # Default voice ID
        self.model = "eleven_monolingual_v1"
        
    def generate_voiceover(self, text, voice_id=None):
        if not self.api_key:
            return None
            
        try:
            voice = voice_id if voice_id else self.voice_id
            
            url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
            headers = {
                "Accept": "audio/mpeg",
                "Content-Type": "application/json",
                "xi-api-key": self.api_key
            }
            data = {
                "text": text,
                "model_id": self.model,
                "voice_settings": {
                    "stability": 0.7,
                    "similarity_boost": 0.8,
                    "style": 0.5,
                    "use_speaker_boost": True
                }
            }
            response = requests.post(url, json=data, headers=headers)
            
            if response.status_code == 200:
                return response.content
            return None
        except Exception as e:
            return None
    
    def get_voices(self):
        if not self.api_key:
            return []
            
        try:
            url = "https://api.elevenlabs.io/v1/voices"
            headers = {"xi-api-key": self.api_key}
            response = requests.get(url, headers=headers)
            
            if response.status_code == 200:
                return response.json().get("voices", [])
            return []
        except Exception as e:
            return []