Spaces:
Running
Running
File size: 25,233 Bytes
ef71549 1d8e193 ef71549 200beb2 ef71549 200beb2 ef71549 200beb2 ef71549 200beb2 ef71549 200beb2 3cfa82d 200beb2 aac140b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import gradio as gr
import pandas as pd
from typing import List, Dict, Union, Optional
class SmartSelectColumns(gr.SelectColumns):
"""
Enhanced SelectColumns component that supports substring matching and column mapping.
Inherits from gr.SelectColumns but adds additional filtering capabilities.
"""
def __init__(
self,
*args,
column_filters: Optional[Dict[str, List[str]]] = None,
column_mapping: Optional[Dict[str, str]] = None,
**kwargs
):
"""
Initialize the SmartSelectColumns component.
Args:
column_filters: Dict mapping filter names to lists of substrings to match
column_mapping: Dict mapping display names to actual column names
*args, **kwargs: Arguments passed to parent SelectColumns
"""
super().__init__(*args, **kwargs)
self.column_filters = column_filters or {}
self.column_mapping = column_mapping or {}
def preprocess(self, x: List[str]) -> List[str]:
"""Transform selected display names back to actual column names."""
if self.column_mapping:
reverse_mapping = {v: k for k, v in self.column_mapping.items()}
return [reverse_mapping.get(col, col) for col in x]
return x
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
"""
Get columns filtered by substring matches.
Args:
df: Input DataFrame
Returns:
Dict mapping filter names to lists of matching columns
"""
filtered_cols = {}
for filter_name, substrings in self.column_filters.items():
matching_cols = []
for col in df.columns:
if any(substr.lower() in col.lower() for substr in substrings):
matching_cols.append(col)
filtered_cols[filter_name] = matching_cols
return filtered_cols
def update(
self,
value: Union[pd.DataFrame, Dict[str, List[str]]],
interactive: Optional[bool] = None
) -> Dict:
"""
Update the component with new values.
Args:
value: Either a DataFrame or dict of predefined column groups
interactive: Whether the component should be interactive
Returns:
Dict containing the update configuration
"""
if isinstance(value, pd.DataFrame):
# Get filtered column groups
filtered_cols = self.get_filtered_columns(value)
# Create display names for columns if mapping exists
choices = list(value.columns)
if self.column_mapping:
choices = [self.column_mapping.get(col, col) for col in choices]
return {
"choices": choices,
"filtered_cols": filtered_cols,
"interactive": interactive if interactive is not None else self.interactive
}
return super().update(value, interactive)
# Example usage
if __name__ == "__main__":
df = pd.DataFrame({
"ioi_score_1": [1, 2, 3],
"ioi_score_2": [4, 5, 6],
"other_metric": [7, 8, 9],
"performance_1": [10, 11, 12]
})
# Define filters and mappings
column_filters = {
"IOI": ["ioi"],
"Performance Metrics": ["performance"]
}
column_mapping = {
"ioi_score_1": "IOI Score (Type 1)",
"ioi_score_2": "IOI Score (Type 2)",
"other_metric": "Other Metric",
"performance_1": "Performance Metric 1"
}
# Create interface
with gr.Blocks() as demo:
select_cols = SmartSelectColumns(
column_filters=column_filters,
column_mapping=column_mapping,
multiselect=True
)
# Update component with DataFrame
select_cols.update(df)
demo.launch()
import gradio as gr
import pandas as pd
from typing import List, Dict, Union, Optional, Any
from dataclasses import fields
class SmartSelectColumns(gr.SelectColumns):
"""
Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities.
"""
def __init__(
self,
column_filters: Optional[Dict[str, List[str]]] = None,
column_mapping: Optional[Dict[str, str]] = None,
initial_selected: Optional[List[str]] = None,
*args,
**kwargs
):
"""
Initialize SmartSelectColumns with enhanced functionality.
Args:
column_filters: Dict mapping filter names to lists of substrings to match
column_mapping: Dict mapping actual column names to display names
initial_selected: List of column names to be initially selected
*args, **kwargs: Additional arguments passed to parent SelectColumns
"""
super().__init__(*args, **kwargs)
self.column_filters = column_filters or {}
self.column_mapping = column_mapping or {}
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
self.initial_selected = initial_selected or []
def preprocess(self, x: List[str]) -> List[str]:
"""
Transform selected display names back to actual column names.
Args:
x: List of selected display names
Returns:
List of actual column names
"""
return [self.reverse_mapping.get(col, col) for col in x]
def postprocess(self, y: List[str]) -> List[str]:
"""
Transform actual column names to display names.
Args:
y: List of actual column names
Returns:
List of display names
"""
return [self.column_mapping.get(col, col) for col in y]
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
"""
Get columns filtered by substring matches.
Args:
df: Input DataFrame
Returns:
Dict mapping filter names to lists of matching display names
"""
filtered_cols = {}
for filter_name, substrings in self.column_filters.items():
matching_cols = []
for col in df.columns:
if any(substr.lower() in col.lower() for substr in substrings):
display_name = self.column_mapping.get(col, col)
matching_cols.append(display_name)
filtered_cols[filter_name] = matching_cols
return filtered_cols
def update(
self,
value: Union[pd.DataFrame, Dict[str, List[str]], Any],
interactive: Optional[bool] = None
) -> Dict:
"""
Update component with new values, supporting DataFrame fields.
Args:
value: DataFrame, dict of columns, or fields object
interactive: Whether component should be interactive
Returns:
Dict containing update configuration
"""
if isinstance(value, pd.DataFrame):
filtered_cols = self.get_filtered_columns(value)
choices = [self.column_mapping.get(col, col) for col in value.columns]
# Set initial selection if provided
value = self.initial_selected if self.initial_selected else choices
return {
"choices": choices,
"value": value,
"filtered_cols": filtered_cols,
"interactive": interactive if interactive is not None else self.interactive
}
# Handle fields object (e.g., from dataclass)
if hasattr(value, '__dataclass_fields__'):
field_names = [field.name for field in fields(value)]
choices = [self.column_mapping.get(name, name) for name in field_names]
return {
"choices": choices,
"value": self.initial_selected if self.initial_selected else choices,
"interactive": interactive if interactive is not None else self.interactive
}
return super().update(value, interactive)
def initialize_leaderboard(df: pd.DataFrame, column_class: Any,
filters: Dict[str, List[str]],
mappings: Dict[str, str],
initial_columns: Optional[List[str]] = None) -> gr.Leaderboard:
"""
Initialize a Gradio Leaderboard with SmartSelectColumns.
Args:
df: Input DataFrame
column_class: Class containing column definitions (e.g., AutoEvalColumn_mib_subgraph)
filters: Column filters for substring matching
mappings: Column name mappings (actual -> display)
initial_columns: List of columns to show initially
Returns:
Configured Leaderboard instance
"""
# Define filters and mappings
filters = {
"IOI Metrics": ["ioi"],
"Performance Metrics": ["performance"]
}
mappings = {
"ioi_score_1": "IOI Score (Type 1)",
"ioi_score_2": "IOI Score (Type 2)",
"other_metric": "Other Metric",
"performance_1": "Performance Metric 1"
}
# Example usage
if __name__ == "__main__":
# Sample data
df = pd.DataFrame({
"ioi_score_1": [1, 2, 3],
"ioi_score_2": [4, 5, 6],
"other_metric": [7, 8, 9],
"performance_1": [10, 11, 12],
"Method": ["A", "B", "C"]
})
# Define filters and mappings
filters = {
"IOI Metrics": ["ioi"],
"gemma2.5": ["gemma2_5`"]
}
mappings = {
"ioi_score_1": "IOI Score (Type 1)",
"ioi_score_2": "IOI Score (Type 2)",
"other_metric": "Other Metric",
"performance_1": "Performance Metric 1"
}
# Create demo interface
with gr.Blocks() as demo:
# Initialize leaderboard with smart columns
leaderboard = initialize_leaderboard(
df=df,
column_class=None, # Replace with your actual column class
filters=filters,
mappings=mappings,
initial_columns=["Method", "IOI Score (Type 1)"]
)
# Create renamed DataFrame with display names
renamed_df = df.rename(columns=mappings)
initial_columns=["Method", "IOI Score (Type 1)"]
initial_columns=?
# Initialize SmartSelectColumns
smart_columns = SmartSelectColumns(
column_filters=filters,
column_mapping=mappings,
initial_selected=initial_columns,
multiselect=True
)
column_class=None
return gr.Leaderboard(
value=renamed_df,
datatype=[c.type for c in fields(column_class)],
select_columns=smart_columns,
search_columns=["Method"],
hide_columns=[],
interactive=False
)
demo.launch()
from gradio_leaderboard import SelectColumns, Leaderboard
import pandas as pd
from typing import List, Dict, Union, Optional, Any
from dataclasses import fields
class SmartSelectColumns(SelectColumns):
"""
Enhanced SelectColumns component for gradio_leaderboard with explicit column grouping.
"""
def __init__(
self,
column_groups: Optional[Dict[str, List[str]]] = None,
column_mapping: Optional[Dict[str, str]] = None,
initial_selected: Optional[List[str]] = None,
**kwargs
):
"""
Initialize SmartSelectColumns with enhanced functionality.
Args:
column_groups: Dict mapping group names to lists of columns in that group
column_mapping: Dict mapping actual column names to display names
initial_selected: List of columns to show initially
"""
super().__init__(**kwargs)
self.column_groups = column_groups or {}
self.column_mapping = column_mapping or {}
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
self.initial_selected = initial_selected or []
def preprocess_value(self, x: List[str]) -> List[str]:
"""Transform selected display names back to actual column names."""
return [self.reverse_mapping.get(col, col) for col in x]
def postprocess_value(self, y: List[str]) -> List[str]:
"""Transform actual column names to display names."""
return [self.column_mapping.get(col, col) for col in y]
def update(
self,
value: Union[pd.DataFrame, Dict[str, List[str]], Any]
) -> Dict:
"""Update component with new values."""
if isinstance(value, pd.DataFrame):
# Get all column names and convert to display names
choices = [self.column_mapping.get(col, col) for col in value.columns]
# Use initial selection or default columns
selected = self.initial_selected if self.initial_selected else choices
# Convert column groups to use display names
filtered_cols = {}
for group_name, columns in self.column_groups.items():
filtered_cols[group_name] = [
self.column_mapping.get(col, col)
for col in columns
if col in value.columns
]
return {
"choices": choices,
"value": selected,
"filtered_cols": filtered_cols
}
# Handle fields object
if hasattr(value, '__dataclass_fields__'):
field_names = [field.name for field in fields(value)]
choices = [self.column_mapping.get(name, name) for name in field_names]
return {
"choices": choices,
"value": self.initial_selected if self.initial_selected else choices
}
return super().update(value)
# Example usage
if __name__ == "__main__":
# Sample DataFrame
# df = pd.DataFrame({
# "eval_name": ["test1", "test2", "test3"],
# "Method": ["method1", "method2", "method3"],
# "ioi_llama3": [0.1, 0.2, 0.3],
# "ioi_qwen2_5": [0.4, 0.5, 0.6],
# "ioi_gpt2": [0.7, 0.8, 0.9],
# "mcqa_llama3": [0.2, 0.3, 0.4],
# "Average": [0.35, 0.45, 0.55]
# })
# Complete column groups for both benchmarks and models
column_groups = {
# Benchmark groups
"Benchmark group for ioi": ["ioi_gpt2", "ioi_qwen2_5", "ioi_gemma2", "ioi_llama3"],
"Benchmark group for mcqa": ["mcqa_qwen2_5", "mcqa_gemma2", "mcqa_llama3"],
"Benchmark group for arithmetic_addition": ["arithmetic_addition_llama3"],
"Benchmark group for arithmetic_subtraction": ["arithmetic_subtraction_llama3"],
"Benchmark group for arc_easy": ["arc_easy_gemma2", "arc_easy_llama3"],
"Benchmark group for arc_challenge": ["arc_challenge_llama3"],
# Model groups
"Model group for qwen2_5": ["ioi_qwen2_5", "mcqa_qwen2_5"],
"Model group for gpt2": ["ioi_gpt2"],
"Model group for gemma2": ["ioi_gemma2", "mcqa_gemma2", "arc_easy_gemma2"],
"Model group for llama3": [
"ioi_llama3",
"mcqa_llama3",
"arithmetic_addition_llama3",
"arithmetic_subtraction_llama3",
"arc_easy_llama3",
"arc_challenge_llama3"
]
}
# Complete mappings for more readable display names
mappings = {
# IOI benchmark mappings
"ioi_llama3": "IOI (LLaMA-3)",
"ioi_qwen2_5": "IOI (Qwen-2.5)",
"ioi_gpt2": "IOI (GPT-2)",
"ioi_gemma2": "IOI (Gemma-2)",
# MCQA benchmark mappings
"mcqa_llama3": "MCQA (LLaMA-3)",
"mcqa_qwen2_5": "MCQA (Qwen-2.5)",
"mcqa_gemma2": "MCQA (Gemma-2)",
# Arithmetic benchmark mappings
"arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
"arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
# ARC benchmark mappings
"arc_easy_llama3": "ARC Easy (LLaMA-3)",
"arc_easy_gemma2": "ARC Easy (Gemma-2)",
"arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
# Other columns
"eval_name": "Evaluation Name",
"Method": "Method",
"Average": "Average Score"
}
# Create SmartSelectColumns instance
smart_columns = SmartSelectColumns(
column_groups=column_groups,
column_mapping=mappings,
initial_selected=["Method", "Average"]
)
# Create Leaderboard directly
leaderboard = Leaderboard(
value=df,
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
select_columns=smart_columns,
search_columns=["Method"],
hide_columns=[],
interactive=False
)
from gradio_leaderboard import SelectColumns, Leaderboard
import pandas as pd
from typing import List, Dict, Union, Optional, Any
from dataclasses import fields
class SmartSelectColumns(SelectColumns):
"""
Enhanced SelectColumns component for gradio_leaderboard with dynamic column filtering.
"""
def __init__(
self,
benchmark_keywords: Optional[List[str]] = None,
model_keywords: Optional[List[str]] = None,
column_mapping: Optional[Dict[str, str]] = None,
initial_selected: Optional[List[str]] = None,
**kwargs
):
"""
Initialize SmartSelectColumns with dynamic filtering.
Args:
benchmark_keywords: List of benchmark names to filter by (e.g., ["ioi", "mcqa"])
model_keywords: List of model names to filter by (e.g., ["llama3", "qwen2_5"])
column_mapping: Dict mapping actual column names to display names
initial_selected: List of columns to show initially
"""
super().__init__(**kwargs)
self.benchmark_keywords = benchmark_keywords or []
self.model_keywords = model_keywords or []
self.column_mapping = column_mapping or {}
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
self.initial_selected = initial_selected or []
def preprocess_value(self, x: List[str]) -> List[str]:
"""Transform selected display names back to actual column names."""
return [self.reverse_mapping.get(col, col) for col in x]
def postprocess_value(self, y: List[str]) -> List[str]:
"""Transform actual column names to display names."""
return [self.column_mapping.get(col, col) for col in y]
def get_filtered_groups(self, df: pd.DataFrame) -> Dict[str, List[str]]:
"""
Dynamically create column groups based on keywords.
"""
filtered_groups = {}
# Create benchmark groups
for benchmark in self.benchmark_keywords:
matching_cols = [
col for col in df.columns
if benchmark in col.lower()
]
if matching_cols:
group_name = f"Benchmark group for {benchmark}"
filtered_groups[group_name] = [
self.column_mapping.get(col, col)
for col in matching_cols
]
# Create model groups
for model in self.model_keywords:
matching_cols = [
col for col in df.columns
if model in col.lower()
]
if matching_cols:
group_name = f"Model group for {model}"
filtered_groups[group_name] = [
self.column_mapping.get(col, col)
for col in matching_cols
]
return filtered_groups
def update(
self,
value: Union[pd.DataFrame, Dict[str, List[str]], Any]
) -> Dict:
"""Update component with new values."""
if isinstance(value, pd.DataFrame):
# Get all column names and convert to display names
choices = [self.column_mapping.get(col, col) for col in value.columns]
# Use initial selection or default columns
selected = self.initial_selected if self.initial_selected else choices
# Get dynamically filtered groups
filtered_cols = self.get_filtered_groups(value)
return {
"choices": choices,
"value": selected,
"filtered_cols": filtered_cols
}
# Handle fields object
if hasattr(value, '__dataclass_fields__'):
field_names = [field.name for field in fields(value)]
choices = [self.column_mapping.get(name, name) for name in field_names]
return {
"choices": choices,
"value": self.initial_selected if self.initial_selected else choices
}
return super().update(value)
# Example usage
if __name__ == "__main__":
# Sample DataFrame
df = pd.DataFrame({
"eval_name": ["test1", "test2", "test3"],
"Method": ["method1", "method2", "method3"],
"ioi_llama3": [0.1, 0.2, 0.3],
"ioi_qwen2_5": [0.4, 0.5, 0.6],
"ioi_gpt2": [0.7, 0.8, 0.9],
"mcqa_llama3": [0.2, 0.3, 0.4],
"Average": [0.35, 0.45, 0.55]
})
# Define keywords for filtering
benchmark_keywords = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"]
model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"]
# Optional: Define display names
mappings = {
"ioi_llama3": "IOI (LLaMA-3)",
"ioi_qwen2_5": "IOI (Qwen-2.5)",
"ioi_gpt2": "IOI (GPT-2)",
"ioi_gemma2": "IOI (Gemma-2)",
"mcqa_llama3": "MCQA (LLaMA-3)",
"mcqa_qwen2_5": "MCQA (Qwen-2.5)",
"mcqa_gemma2": "MCQA (Gemma-2)",
"arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
"arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
"arc_easy_llama3": "ARC Easy (LLaMA-3)",
"arc_easy_gemma2": "ARC Easy (Gemma-2)",
"arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
"eval_name": "Evaluation Name",
"Method": "Method",
"Average": "Average Score"
}
# Create SmartSelectColumns instance
smart_columns = SmartSelectColumns(
benchmark_keywords=benchmark_keywords,
model_keywords=model_keywords,
column_mapping=mappings,
initial_selected=["Method", "Average"]
)
# Create Leaderboard
leaderboard = Leaderboard(
value=df,
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
select_columns=smart_columns,
search_columns=["Method"],
hide_columns=[],
interactive=False
)
Debugging DataFrame columns: ['eval_name', 'Method', 'ioi_llama3', 'ioi_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_easy_gemma2', 'arc_challenge_llama3', 'Average']
Benchmark group for ioi: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3']
Benchmark group for mcqa: ['mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3']
Benchmark group for arithmetic_addition: ['arithmetic_addition_llama3']
Benchmark group for arithmetic_subtraction: ['arithmetic_subtraction_llama3']
Benchmark group for arc_easy: ['arc_easy_gemma2', 'arc_easy_llama3']
Benchmark group for arc_challenge: ['arc_challenge_llama3']
Model group for qwen2_5: ['ioi_qwen2_5', 'mcqa_qwen2_5']
Model group for gpt2: ['ioi_gpt2']
Model group for gemma2: ['ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2']
Model group for llama3: ['ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3']
All available columns: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_gemma2', 'arc_easy_llama3', 'arc_challenge_llama3', 'ioi_qwen2_5', 'mcqa_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2', 'ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3']
* Running on local URL: http://0.0.0.0:7860
/usr/local/lib/python3.10/site-packages/gradio/blocks.py:2634: UserWarning: Setting share=True is not supported on Hugging Face Spaces
warnings.warn(
To create a public link, set `share=True` in `launch()`.
model_id: llama3, gemma2, gpt2, qwen2.5, |