Spaces:
Running
Running
File size: 23,903 Bytes
32dbb08 5dd7582 61542b8 32dbb08 61542b8 32dbb08 5dd7582 32dbb08 6a05116 06e8556 32dbb08 ce5dc65 32dbb08 ce5dc65 32dbb08 2817fcb 32dbb08 2817fcb 32dbb08 985478d cd60bd0 2817fcb cd60bd0 c57e76c 32dbb08 61542b8 5dd7582 f585ea0 32dbb08 53c7136 32dbb08 9fd4b06 06e8556 9fd4b06 06e8556 85b93b7 a90efab e27c948 0aec7f4 ad392eb 606fc93 ad392eb 9fd4b06 ad392eb e27c948 ad392eb 06e8556 9fd4b06 606fc93 0c85aa2 ad392eb 0c85aa2 ad392eb 0c85aa2 ad392eb 0c85aa2 ad392eb 0c85aa2 ad392eb f6dfabd 0c85aa2 0810300 f6dfabd 0c85aa2 f732437 85b6004 0c85aa2 009db1f 0c85aa2 009db1f 0c85aa2 ad392eb 0c85aa2 ad392eb 0c85aa2 ad392eb 0c85aa2 ad392eb 9fd4b06 06e8556 2817fcb 32dbb08 2817fcb 28169bd 2817fcb 531005f 2817fcb 28169bd 2817fcb 32dbb08 2817fcb 28169bd 32dbb08 5dd7582 32dbb08 5dd7582 32dbb08 531005f 5dd7582 32dbb08 4493851 2817fcb 4493851 06e8556 32dbb08 9fd4b06 32dbb08 9fd4b06 06e8556 53c7136 f585ea0 e46e945 f585ea0 32dbb08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
BENCHMARK_COLS_MULTIMODAL,
BENCHMARK_COLS_MIB_SUBGRAPH,
BENCHMARK_COLS_MIB_CAUSALGRAPH,
COLS,
COLS_MIB_SUBGRAPH,
COLS_MIB_CAUSALGRAPH,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib_subgraph,
AutoEvalColumn_mib_causalgraph,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
# print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_SUBGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_CAUSALGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)
# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH,
EVAL_REQUESTS_PATH,
COLS_MIB_CAUSALGRAPH,
BENCHMARK_COLS_MIB_CAUSALGRAPH
)
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# def init_leaderboard_mib_subgraph(dataframe, track):
# # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # filter for correct track
# # dataframe = dataframe.loc[dataframe["Track"] == track]
# # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=["Method"], # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method"
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
from src.about import TasksMib_Subgraph
# def init_leaderboard_mib_subgraph(dataframe, track):
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # Get unique tasks and models for filters
# tasks = list(set(task.value.benchmark for task in TasksMib_Subgraph))
# models = list(set(
# model
# for task in TasksMib_Subgraph
# for model in task.value.models
# ))
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# column_filters=[
# ColumnFilter(
# column="task_filter",
# choices=tasks,
# label="Filter by Task:",
# default=None
# ),
# ColumnFilter(
# column="model_filter",
# choices=models,
# label="Filter by Model:",
# default=None
# )
# ],
# search_columns=["Method"],
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# def init_leaderboard_mib_subgraph(dataframe, track):
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # Add filter columns to display
# dataframe['Task'] = dataframe.apply(
# lambda row: [task.value.benchmark for task in TasksMib_Subgraph
# if any(f"{task.value.benchmark}_{model}" in row.index
# for model in task.value.models)][0],
# axis=1
# )
# dataframe['Model'] = dataframe.apply(
# lambda row: [model for task in TasksMib_Subgraph
# for model in task.value.models
# if f"{task.value.benchmark}_{model}" in row.index][0],
# axis=1
# )
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=["Method", "Task", "Model"], # Add Task and Model to searchable columns
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with grouped column selection."""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # Get tasks and models using the new class methods
# tasks = TasksMib_Subgraph.get_all_tasks()
# models = TasksMib_Subgraph.get_all_models()
# # Create a mapping from selection to actual column names
# selection_map = {}
# # Add task mappings - when a task is selected, show all its columns
# for task in tasks:
# # For each task, find all valid task_model combinations
# valid_combos = []
# for model in models:
# col_name = f"{task}_{model}"
# if col_name in dataframe.columns:
# valid_combos.append(col_name)
# if valid_combos:
# selection_map[task] = valid_combos
# # Add model mappings - when a model is selected, show all its columns
# for model in models:
# # For each model, find all valid task_model combinations
# valid_combos = []
# for task in tasks:
# col_name = f"{task}_{model}"
# if col_name in dataframe.columns:
# valid_combos.append(col_name)
# if valid_combos:
# selection_map[model] = valid_combos
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# choices=[tasks, models], # Two groups of choices
# labels=["Tasks", "Models"], # Labels for each group
# default_selection=[*tasks, *models], # Show everything by default
# cant_deselect=["Method"], # Method column always visible
# label="Filter by Tasks or Models:",
# selection_map=selection_map # Map selections to actual columns
# ),
# search_columns=["Method"],
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with grouped column selection for gradio-leaderboard 0.0.13"""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # Get all unique tasks and models
# tasks = [task.value.benchmark for task in TasksMib_Subgraph]
# models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
# # Create two selection groups: one for tasks and one for models
# # In 0.0.13, we can only have one SelectColumns, so we'll combine them
# selection_choices = [
# *[f"Task: {task}" for task in tasks], # Prefix with 'Task:' for clarity
# *[f"Model: {model}" for model in models] # Prefix with 'Model:' for clarity
# ]
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=selection_choices, # Show all by default
# choices=selection_choices,
# cant_deselect=["Method"], # Method column always visible
# label="Select Tasks or Models:",
# ),
# search_columns=["Method"],
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard focusing only on task and model filtering.
# This implementation creates a focused view where users can select which task-model
# combinations they want to see, making the analysis of results more straightforward.
# """
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # Get all task-model combinations that actually exist in our data
# task_model_columns = []
# for task in TasksMib_Subgraph:
# for model in task.value.models:
# col_name = f"{task.value.benchmark}_{model}"
# if col_name in dataframe.columns:
# task_model_columns.append(col_name)
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=task_model_columns,
# label="Select Task-Model Combinations:",
# ),
# search_columns=["Method"], # Keep Method searchable but not in column selection
# hide_columns=[], # We don't need to hide any columns
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with verified task/model column selection"""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # First, let's identify which columns actually exist in our dataframe
# print("Available columns in dataframe:", dataframe.columns.tolist())
# # Create task selections based on TasksMib_Subgraph definition
# task_selections = []
# for task in TasksMib_Subgraph:
# task_cols = []
# for model in task.value.models:
# col_name = f"{task.value.benchmark}_{model}"
# if col_name in dataframe.columns:
# task_cols.append(col_name)
# if task_cols: # Only add tasks that have data
# print(f"Task {task.value.benchmark} has columns:", task_cols)
# task_selections.append(f"Task: {task.value.benchmark}")
# # Create model selections by checking which models appear in columns
# model_selections = []
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
# for model in all_models:
# model_cols = []
# for task in TasksMib_Subgraph:
# if model in task.value.models:
# col_name = f"{task.value.benchmark}_{model}"
# if col_name in dataframe.columns:
# model_cols.append(col_name)
# if model_cols: # Only add models that have data
# print(f"Model {model} has columns:", model_cols)
# model_selections.append(f"Model: {model}")
# # Combine all selections
# selections = task_selections + model_selections
# print("Final selection options:", selections)
# # Print DataFrame information
# print("\nDebugging DataFrame:")
# print("DataFrame columns:", dataframe.columns.tolist())
# print("DataFrame shape:", dataframe.shape)
# print("DataFrame head:\n", dataframe.head())
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=selections,
# label="Select Tasks or Models:"
# ),
# search_columns=["Method"],
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
def init_leaderboard_mib_subgraph(dataframe, track):
"""Initialize the subgraph leaderboard with benchmark and model filtering capabilities."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Print DataFrame information for debugging
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# Get result columns (excluding Method and Average)
result_columns = [col for col in dataframe.columns
if col not in ['Method', 'Average'] and '_' in col]
# Create benchmark and model selections
benchmarks = set()
models = set()
print(f"\nDebugging Result Columns: {result_columns}")
# Extract unique benchmarks and models from column names
for col in result_columns:
print(f"col is {col}")
benchmark, model = col.split('_')
benchmarks.add(benchmark)
models.add(model)
print(f"benchmark is {benchmark} and model is {model}")
# Create selection groups
benchmark_selections = {
# For each benchmark, store which columns should be shown
benchmark: [col for col in result_columns if col.startswith(f"{benchmark}_")]
for benchmark in benchmarks
}
model_selections = {
# For each model, store which columns should be shown
model: [col for col in result_columns if col.startswith(f"_{model}")]
for model in models
}
# Combine the selection mappings
selection_groups = {
**benchmark_selections,
**model_selections
}
print("\nDebugging Selection Groups:")
print("Benchmarks:", benchmark_selections.keys())
print("Models:", model_selections.keys())
# Convert keys to list for selection options
selection_options = list(selection_groups.keys())
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
select_columns=SelectColumns(
default_selection=selection_options, # Show all options by default
label="Filter by Benchmark or Model:"
),
search_columns=["Method"],
hide_columns=[],
interactive=False,
)
def init_leaderboard_mib_causalgraph(dataframe, track):
# print("Debugging column issues:")
# print("\nActual DataFrame columns:")
# print(dataframe.columns.tolist())
# print("\nExpected columns for Leaderboard:")
expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
# print(expected_cols)
# print("\nMissing columns:")
missing_cols = [col for col in expected_cols if col not in dataframe.columns]
# print(missing_cols)
# print("\nSample of DataFrame content:")
# print(dataframe.head().to_string())
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["Method"],
hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_leaderboard_mib_causalgraph(dataframe, track):
# print("Debugging column issues:")
# print("\nActual DataFrame columns:")
# print(dataframe.columns.tolist())
# Create only necessary columns
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
select_columns=SelectColumns(
default_selection=["Method"], # Start with just Method column
cant_deselect=["Method"], # Method column should always be visible
label="Select Columns to Display:",
),
search_columns=["Method"],
hide_columns=[],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
# Then modify the Causal Graph tab section
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
with gr.Tabs() as causalgraph_tabs:
with gr.TabItem("Detailed View", id=0):
leaderboard_detailed = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED,
"Causal Graph"
)
with gr.TabItem("Aggregated View", id=1):
leaderboard_aggregated = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED,
"Causal Graph"
)
with gr.TabItem("Intervention Averaged", id=2):
leaderboard_averaged = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED,
"Causal Graph"
)
# with gr.Row():
# with gr.Accordion("π Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)
|