File size: 45,249 Bytes
25d2eb7
2827b8a
 
39a5b1c
2827b8a
7a1cd7a
a81fb12
95530b9
39a5b1c
f5eb405
95530b9
 
225d3fb
 
3b4c438
 
f5eb405
95530b9
 
 
 
c58907b
 
24f7d5b
ed5b7bd
 
 
 
 
 
 
 
 
 
95530b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
7a1cd7a
ed5b7bd
 
 
 
 
 
 
 
7a1cd7a
73a84b9
 
 
24f7d5b
ed5b7bd
 
 
 
225d3fb
ed5b7bd
 
 
95530b9
 
7a1cd7a
4f0286f
24f7d5b
 
 
 
 
 
 
 
 
2827b8a
ed5b7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
f5eb405
 
3bd0812
95530b9
 
 
 
f39d105
24f7d5b
f5eb405
95530b9
 
 
 
c58907b
 
95530b9
 
2a0be82
 
95530b9
c58907b
3bd0812
5422464
95530b9
 
 
 
 
 
 
 
 
 
 
5422464
 
3bd0812
95530b9
c58907b
95530b9
 
 
 
 
f39d105
24f7d5b
95530b9
 
 
 
c58907b
 
95530b9
 
2a0be82
 
95530b9
c58907b
39a5b1c
 
95530b9
 
 
 
 
 
 
 
 
 
 
39a5b1c
 
 
95530b9
f5eb405
6b0e834
39a5b1c
c58907b
 
72c7e2c
1282e7b
e49e0e9
24f7d5b
d54c792
 
 
 
24f7d5b
4f0286f
 
2f9e086
4f0286f
1744dee
4f0286f
 
 
95530b9
225d3fb
4f0286f
 
1744dee
4f0286f
 
 
95530b9
225d3fb
4f0286f
 
95530b9
2f9e086
 
 
 
1a5f99b
c58907b
4f0286f
24f7d5b
95530b9
4f0286f
95530b9
4f0286f
 
 
 
 
 
 
 
 
 
 
c58907b
4f0286f
c58907b
4f0286f
 
72c7e2c
4f0286f
24f7d5b
72c7e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744dee
 
 
 
 
 
 
 
 
 
72c7e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744dee
 
 
 
 
 
 
 
72c7e2c
 
 
 
 
1744dee
 
 
 
 
 
 
 
72c7e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
1744dee
 
 
 
 
 
 
 
 
 
 
 
 
 
72c7e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5b7bd
72c7e2c
 
 
 
 
 
 
 
 
 
225d3fb
72c7e2c
2f9e086
72c7e2c
 
 
 
 
 
 
2f9e086
72c7e2c
 
 
 
 
 
 
 
225d3fb
 
 
 
72c7e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5b7bd
2f9e086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225d3fb
2f9e086
 
 
 
 
 
 
225d3fb
2f9e086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225d3fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff

# Load the model
model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# Default parameters
default_dataset_name = "sst2"
default_dataset1_split = "train"  # Default for the first dataset is "train"
default_dataset2_split = "test"   # Default for the second dataset is "test"
default_text_column = "sentence"
default_threshold = 0.9

def deduplicate_embeddings(
    embeddings_a: np.ndarray,
    embeddings_b: np.ndarray = None,
    threshold: float = 0.9,
    batch_size: int = 1024,
    progress=None
) -> tuple[np.ndarray, dict[int, int]]:
    """
    Deduplicate embeddings within one dataset or across two datasets.

    :param embeddings_a: Embeddings of Dataset 1.
    :param embeddings_b: Optional, embeddings of Dataset 2.
    :param threshold: Similarity threshold for deduplication.
    :param batch_size: Batch size for similarity computation.
    :param progress: Gradio progress tracker for feedback.
    :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
    """
    if embeddings_b is None:
        reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
        duplicate_to_original = {}
        results = reach.nearest_neighbor_threshold(
            embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
        )
        for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
            for sim_idx, _ in similar_items:
                sim_idx = int(sim_idx)
                if sim_idx != i and sim_idx not in duplicate_to_original:
                    duplicate_to_original[sim_idx] = i
        deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
        return deduplicated_indices, duplicate_to_original
    else:
        reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
        duplicate_indices_in_b = []
        duplicate_to_original = {}
        results = reach.nearest_neighbor_threshold(
            embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
        )
        for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
            if similar_items:
                duplicate_indices_in_b.append(i)
                duplicate_to_original[i] = int(similar_items[0][0])
        return duplicate_indices_in_b, duplicate_to_original

def display_word_differences(x: str, y: str) -> str:
    """
    Display the word-level differences between two texts, formatted to avoid
    misinterpretation of Markdown syntax.

    :param x: First text.
    :param y: Second text.
    :return: A string showing word-level differences, wrapped in a code block.
    """
    diff = ndiff(x.split(), y.split())
    formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
    return f"```\n{formatted_diff}\n```"

def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
    """
    Load texts from a specified dataset and split.

    :param dataset_name: Name of the dataset.
    :param dataset_split: Split of the dataset (e.g., 'train', 'validation', 'test').
    :param text_column: Name of the text column.
    :return: A list of texts from the dataset.
    """
    ds = load_dataset(dataset_name, split=dataset_split)
    return [example[text_column] for example in ds]

def perform_deduplication(
    deduplication_type: str,
    dataset1_name: str,
    dataset1_split: str,
    dataset1_text_column: str,
    dataset2_name: str = "",
    dataset2_split: str = "",
    dataset2_text_column: str = "",
    threshold: float = default_threshold,
    progress: gr.Progress = gr.Progress(track_tqdm=True)
):
    """
    Perform deduplication on one or two datasets based on the deduplication type.

    :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
    :param dataset1_name: Name of the first dataset.
    :param dataset1_split: Split of the first dataset.
    :param dataset1_text_column: Text column of the first dataset.
    :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
    :param dataset2_split: Optional, split of the second dataset.
    :param dataset2_text_column: Optional, text column of the second dataset.
    :param threshold: Similarity threshold for deduplication.
    :param progress: Gradio progress tracker.
    :return: Status updates and result text for the Gradio interface.
    """
    try:
        threshold = float(threshold)

        # Load and process Dataset 1
        yield "Loading Dataset 1...", ""
        texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
        yield "Computing embeddings for Dataset 1...", ""
        embeddings1 = model.encode(texts1, show_progressbar=True)

        if deduplication_type == "Single dataset":
            # Deduplicate within Dataset 1
            yield "Deduplicating within Dataset 1...", ""
            deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
                embeddings1, threshold=threshold, progress=progress
            )

            num_duplicates = len(duplicate_mapping)
            result_text = (
                f"**Total documents:** {len(texts1)}\n\n"
                f"**Duplicates found:** {num_duplicates}\n\n"
                f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
            )

            if num_duplicates > 0:
                result_text += "**Sample duplicates:**\n\n"
                for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
                    orig_text = texts1[orig_idx]
                    dup_text = texts1[dup_idx]
                    differences = display_word_differences(orig_text, dup_text)
                    result_text += (
                        f"**Original:**\n{orig_text}\n\n"
                        f"**Duplicate:**\n{dup_text}\n\n"
                        f"**Differences:**\n{differences}\n"
                        + "-" * 50 + "\n\n"
                    )
            else:
                result_text += "No duplicates found."

            yield "Deduplication completed.", result_text

        else:
            # Load and process Dataset 2
            yield "Loading Dataset 2...", ""
            texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
            yield "Computing embeddings for Dataset 2...", ""
            embeddings2 = model.encode(texts2, show_progressbar=True)

            # Deduplicate Dataset 2 against Dataset 1
            yield "Deduplicating Dataset 2 against Dataset 1...", ""
            duplicate_indices, duplicate_mapping = deduplicate_embeddings(
                embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
            )

            num_duplicates = len(duplicate_indices)
            result_text = (
                f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
                f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
                f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
            )

            if num_duplicates > 0:
                result_text += "**Sample duplicates from Dataset 2:**\n\n"
                for idx in duplicate_indices[:5]:
                    orig_text = texts1[duplicate_mapping[idx]]
                    dup_text = texts2[idx]
                    differences = display_word_differences(orig_text, dup_text)
                    result_text += (
                        f"**Original (Dataset 1):**\n{orig_text}\n\n"
                        f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
                        f"**Differences:**\n{differences}\n"
                        + "-" * 50 + "\n\n"
                    )
            else:
                result_text += "No duplicates found."

            yield "Deduplication completed.", result_text

    except Exception as e:
        yield f"An error occurred: {e}", ""
        raise e

# Gradio app with stop button support
with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
    gr.Markdown("# Semantic Deduplication")
    gr.Markdown("""
    This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
    It can be used to identify duplicate texts within a single dataset or across two datasets.
    You can adjust the similarity threshold to control the strictness of the deduplication.\n
    NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
    """)

    deduplication_type = gr.Radio(
        choices=["Cross-dataset", "Single dataset"],  # Swapped "Cross-dataset" to the left
        label="Deduplication Type",
        value="Cross-dataset",  # Set "Cross-dataset" as the default value
    )

    with gr.Row():
        dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
        dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")  # Default split is "train"
        dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    dataset2_inputs = gr.Column(visible=True)  # Make dataset2_inputs visible by default
    with dataset2_inputs:
        gr.Markdown("### Dataset 2")
        with gr.Row():
            dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
            dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")  # Default split is "test"
            dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")

    with gr.Row():  # Placing the button in the same row for better alignment
        compute_button = gr.Button("Deduplicate")

    status_output = gr.Markdown(elem_id="status_output")
    result_output = gr.Markdown()

    def update_visibility(choice: str):
        return gr.update(visible=choice == "Cross-dataset")

    deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)

    compute_button.click(
        fn=perform_deduplication,
        inputs=[
            deduplication_type,
            dataset1_name,
            dataset1_split,
            dataset1_text_column,
            dataset2_name,
            dataset2_split,
            dataset2_text_column,
            threshold,
        ],
        outputs=[status_output, result_output],
    )


demo.launch()

# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# from model2vec import StaticModel
# from reach import Reach
# from difflib import ndiff

# # Load the model
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# # Default parameters
# default_dataset_name = "sst2"
# default_dataset_split = "train"
# default_text_column = "sentence"
# default_threshold = 0.9

# def deduplicate_embeddings(
#     embeddings_a: np.ndarray,
#     embeddings_b: np.ndarray = None,
#     threshold: float = 0.9,
#     batch_size: int = 1024,
#     progress=None
# ) -> tuple[np.ndarray, dict[int, int]]:
#     """
#     Deduplicate embeddings within one dataset or across two datasets.

#     :param embeddings_a: Embeddings of Dataset 1.
#     :param embeddings_b: Optional, embeddings of Dataset 2.
#     :param threshold: Similarity threshold for deduplication.
#     :param batch_size: Batch size for similarity computation.
#     :param progress: Gradio progress tracker for feedback.
#     :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
#     """
#     if embeddings_b is None:
#         reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
#         duplicate_to_original = {}
#         results = reach.nearest_neighbor_threshold(
#             embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
#         )
#         for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
#             for sim_idx, _ in similar_items:
#                 sim_idx = int(sim_idx)
#                 if sim_idx != i and sim_idx not in duplicate_to_original:
#                     duplicate_to_original[sim_idx] = i
#         deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
#         return deduplicated_indices, duplicate_to_original
#     else:
#         reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
#         duplicate_indices_in_b = []
#         duplicate_to_original = {}
#         results = reach.nearest_neighbor_threshold(
#             embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
#         )
#         for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
#             if similar_items:
#                 duplicate_indices_in_b.append(i)
#                 duplicate_to_original[i] = int(similar_items[0][0])
#         return duplicate_indices_in_b, duplicate_to_original

# def display_word_differences(x: str, y: str) -> str:
#     """
#     Display the word-level differences between two texts, formatted to avoid
#     misinterpretation of Markdown syntax.

#     :param x: First text.
#     :param y: Second text.
#     :return: A string showing word-level differences, wrapped in a code block.
#     """
#     diff = ndiff(x.split(), y.split())
#     formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
#     return f"```\n{formatted_diff}\n```"

# def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
#     """
#     Load texts from a specified dataset and split.

#     :param dataset_name: Name of the dataset.
#     :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
#     :param text_column: Name of the text column.
#     :return: A list of texts from the dataset.
#     """
#     ds = load_dataset(dataset_name, split=dataset_split)
#     return [example[text_column] for example in ds]

# def perform_deduplication(
#     deduplication_type: str,
#     dataset1_name: str,
#     dataset1_split: str,
#     dataset1_text_column: str,
#     dataset2_name: str = "",
#     dataset2_split: str = "",
#     dataset2_text_column: str = "",
#     threshold: float = default_threshold,
#     progress: gr.Progress = gr.Progress(track_tqdm=True)
# ):
#     """
#     Perform deduplication on one or two datasets based on the deduplication type.

#     :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
#     :param dataset1_name: Name of the first dataset.
#     :param dataset1_split: Split of the first dataset.
#     :param dataset1_text_column: Text column of the first dataset.
#     :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
#     :param dataset2_split: Optional, split of the second dataset.
#     :param dataset2_text_column: Optional, text column of the second dataset.
#     :param threshold: Similarity threshold for deduplication.
#     :param progress: Gradio progress tracker.
#     :return: Status updates and result text for the Gradio interface.
#     """
#     try:
#         threshold = float(threshold)

#         # Load and process Dataset 1
#         yield "Loading Dataset 1...", ""
#         texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
#         yield "Computing embeddings for Dataset 1...", ""
#         embeddings1 = model.encode(texts1, show_progressbar=True)

#         if deduplication_type == "Single dataset":
#             # Deduplicate within Dataset 1
#             yield "Deduplicating within Dataset 1...", ""
#             deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
#                 embeddings1, threshold=threshold, progress=progress
#             )

#             num_duplicates = len(duplicate_mapping)
#             result_text = (
#                 f"**Total documents:** {len(texts1)}\n\n"
#                 f"**Duplicates found:** {num_duplicates}\n\n"
#                 f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
#             )

#             if num_duplicates > 0:
#                 result_text += "**Sample duplicates:**\n\n"
#                 for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
#                     orig_text = texts1[orig_idx]
#                     dup_text = texts1[dup_idx]
#                     differences = display_word_differences(orig_text, dup_text)
#                     result_text += (
#                         f"**Original:**\n{orig_text}\n\n"
#                         f"**Duplicate:**\n{dup_text}\n\n"
#                         f"**Differences:**\n{differences}\n"
#                         + "-" * 50 + "\n\n"
#                     )
#             else:
#                 result_text += "No duplicates found."

#             yield "Deduplication completed.", result_text

#         else:
#             # Load and process Dataset 2
#             yield "Loading Dataset 2...", ""
#             texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
#             yield "Computing embeddings for Dataset 2...", ""
#             embeddings2 = model.encode(texts2, show_progressbar=True)

#             # Deduplicate Dataset 2 against Dataset 1
#             yield "Deduplicating Dataset 2 against Dataset 1...", ""
#             duplicate_indices, duplicate_mapping = deduplicate_embeddings(
#                 embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
#             )

#             num_duplicates = len(duplicate_indices)
#             result_text = (
#                 f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
#                 f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
#                 f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
#             )

#             if num_duplicates > 0:
#                 result_text += "**Sample duplicates from Dataset 2:**\n\n"
#                 for idx in duplicate_indices[:5]:
#                     orig_text = texts1[duplicate_mapping[idx]]
#                     dup_text = texts2[idx]
#                     differences = display_word_differences(orig_text, dup_text)
#                     result_text += (
#                         f"**Original (Dataset 1):**\n{orig_text}\n\n"
#                         f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
#                         f"**Differences:**\n{differences}\n"
#                         + "-" * 50 + "\n\n"
#                     )
#             else:
#                 result_text += "No duplicates found."

#             yield "Deduplication completed.", result_text

#     except Exception as e:
#         yield f"An error occurred: {e}", ""
#         raise e

# # Gradio app with stop button support
# with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
#     gr.Markdown("# Semantic Deduplication")
#     gr.Markdown("""
#     This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
#     It can be used to identify duplicate texts within a single dataset or across two datasets.
#     You can adjust the similarity threshold to control the strictness of the deduplication.\n
#     NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
#     """)

#     deduplication_type = gr.Radio(
#         choices=["Cross-dataset", "Single dataset"],  # Swapped "Cross-dataset" to the left
#         label="Deduplication Type",
#         value="Cross-dataset",  # Set "Cross-dataset" as the default value
#     )

#     with gr.Row():
#         dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
#         dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
#         dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

#     dataset2_inputs = gr.Column(visible=True)  # Make dataset2_inputs visible by default
#     with dataset2_inputs:
#         gr.Markdown("### Dataset 2")
#         with gr.Row():
#             dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
#             dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
#             dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

#     threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")

#     with gr.Row():  # Placing the button in the same row for better alignment
#         compute_button = gr.Button("Deduplicate")

#     status_output = gr.Markdown(elem_id="status_output")
#     result_output = gr.Markdown()

#     def update_visibility(choice: str):
#         return gr.update(visible=choice == "Cross-dataset")

#     deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)

#     compute_button.click(
#         fn=perform_deduplication,
#         inputs=[
#             deduplication_type,
#             dataset1_name,
#             dataset1_split,
#             dataset1_text_column,
#             dataset2_name,
#             dataset2_split,
#             dataset2_text_column,
#             threshold,
#         ],
#         outputs=[status_output, result_output],
#     )


# demo.launch()

# # import gradio as gr
# # from datasets import load_dataset
# # import numpy as np
# # from model2vec import StaticModel
# # from reach import Reach
# # from difflib import ndiff

# # # Load the model
# # model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# # # Default parameters
# # default_dataset_name = "sst2"
# # default_dataset_split = "train"
# # default_text_column = "sentence"
# # default_threshold = 0.9

# # def deduplicate_embeddings(
# #     embeddings_a: np.ndarray,
# #     embeddings_b: np.ndarray = None,
# #     threshold: float = 0.9,
# #     batch_size: int = 1024,
# #     progress=None
# # ) -> tuple[np.ndarray, dict[int, int]]:
# #     """
# #     Deduplicate embeddings within one dataset or across two datasets.

# #     :param embeddings_a: Embeddings of Dataset 1.
# #     :param embeddings_b: Optional, embeddings of Dataset 2.
# #     :param threshold: Similarity threshold for deduplication.
# #     :param batch_size: Batch size for similarity computation.
# #     :param progress: Gradio progress tracker for feedback.
# #     :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
# #     """
# #     if embeddings_b is None:
# #         reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
# #         duplicate_to_original = {}
# #         results = reach.nearest_neighbor_threshold(
# #             embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
# #         )
# #         for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
# #             for sim_idx, _ in similar_items:
# #                 sim_idx = int(sim_idx)
# #                 if sim_idx != i and sim_idx not in duplicate_to_original:
# #                     duplicate_to_original[sim_idx] = i
# #         deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
# #         return deduplicated_indices, duplicate_to_original
# #     else:
# #         reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
# #         duplicate_indices_in_b = []
# #         duplicate_to_original = {}
# #         results = reach.nearest_neighbor_threshold(
# #             embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
# #         )
# #         for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
# #             if similar_items:
# #                 duplicate_indices_in_b.append(i)
# #                 duplicate_to_original[i] = int(similar_items[0][0])
# #         return duplicate_indices_in_b, duplicate_to_original

# # def display_word_differences(x: str, y: str) -> str:
# #     """
# #     Display the word-level differences between two texts, formatted to avoid
# #     misinterpretation of Markdown syntax.

# #     :param x: First text.
# #     :param y: Second text.
# #     :return: A string showing word-level differences, wrapped in a code block.
# #     """
# #     diff = ndiff(x.split(), y.split())
# #     formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
# #     return f"```\n{formatted_diff}\n```"

# # def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
# #     """
# #     Load texts from a specified dataset and split.

# #     :param dataset_name: Name of the dataset.
# #     :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
# #     :param text_column: Name of the text column.
# #     :return: A list of texts from the dataset.
# #     """
# #     ds = load_dataset(dataset_name, split=dataset_split)
# #     return [example[text_column] for example in ds]

# # def perform_deduplication(
# #     deduplication_type: str,
# #     dataset1_name: str,
# #     dataset1_split: str,
# #     dataset1_text_column: str,
# #     dataset2_name: str = "",
# #     dataset2_split: str = "",
# #     dataset2_text_column: str = "",
# #     threshold: float = default_threshold,
# #     progress: gr.Progress = gr.Progress(track_tqdm=True)
# # ):
# #     """
# #     Perform deduplication on one or two datasets based on the deduplication type.

# #     :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
# #     :param dataset1_name: Name of the first dataset.
# #     :param dataset1_split: Split of the first dataset.
# #     :param dataset1_text_column: Text column of the first dataset.
# #     :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
# #     :param dataset2_split: Optional, split of the second dataset.
# #     :param dataset2_text_column: Optional, text column of the second dataset.
# #     :param threshold: Similarity threshold for deduplication.
# #     :param progress: Gradio progress tracker.
# #     :return: Status updates and result text for the Gradio interface.
# #     """
# #     try:
# #         threshold = float(threshold)

# #         # Load and process Dataset 1
# #         yield "Loading Dataset 1...", ""
# #         texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
# #         yield "Computing embeddings for Dataset 1...", ""
# #         embeddings1 = model.encode(texts1, show_progressbar=True)

# #         if deduplication_type == "Single dataset":
# #             # Deduplicate within Dataset 1
# #             yield "Deduplicating within Dataset 1...", ""
# #             deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
# #                 embeddings1, threshold=threshold, progress=progress
# #             )

# #             num_duplicates = len(duplicate_mapping)
# #             result_text = (
# #                 f"**Total documents:** {len(texts1)}\n\n"
# #                 f"**Duplicates found:** {num_duplicates}\n\n"
# #                 f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
# #             )

# #             if num_duplicates > 0:
# #                 result_text += "**Sample duplicates:**\n\n"
# #                 for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
# #                     orig_text = texts1[orig_idx]
# #                     dup_text = texts1[dup_idx]
# #                     differences = display_word_differences(orig_text, dup_text)
# #                     result_text += (
# #                         f"**Original:**\n{orig_text}\n\n"
# #                         f"**Duplicate:**\n{dup_text}\n\n"
# #                         f"**Differences:**\n{differences}\n"
# #                         + "-" * 50 + "\n\n"
# #                     )
# #             else:
# #                 result_text += "No duplicates found."

# #             yield "Deduplication completed.", result_text

# #         else:
# #             # Load and process Dataset 2
# #             yield "Loading Dataset 2...", ""
# #             texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
# #             yield "Computing embeddings for Dataset 2...", ""
# #             embeddings2 = model.encode(texts2, show_progressbar=True)

# #             # Deduplicate Dataset 2 against Dataset 1
# #             yield "Deduplicating Dataset 2 against Dataset 1...", ""
# #             duplicate_indices, duplicate_mapping = deduplicate_embeddings(
# #                 embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
# #             )

# #             num_duplicates = len(duplicate_indices)
# #             result_text = (
# #                 f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
# #                 f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
# #                 f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
# #             )

# #             if num_duplicates > 0:
# #                 result_text += "**Sample duplicates from Dataset 2:**\n\n"
# #                 for idx in duplicate_indices[:5]:
# #                     orig_text = texts1[duplicate_mapping[idx]]
# #                     dup_text = texts2[idx]
# #                     differences = display_word_differences(orig_text, dup_text)
# #                     result_text += (
# #                         f"**Original (Dataset 1):**\n{orig_text}\n\n"
# #                         f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
# #                         f"**Differences:**\n{differences}\n"
# #                         + "-" * 50 + "\n\n"
# #                     )
# #             else:
# #                 result_text += "No duplicates found."

# #             yield "Deduplication completed.", result_text

# #     except Exception as e:
# #         yield f"An error occurred: {e}", ""
# #         raise e

# # # Gradio app with stop button support
# # with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
# #     gr.Markdown("# Semantic Deduplication")
# #     gr.Markdown("""
# #     This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
# #     It can be used to identify duplicate texts within a single dataset or across two datasets.
# #     You can adjust the similarity threshold to control the strictness of the deduplication.\n
# #     NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
# #     """)

# #     deduplication_type = gr.Radio(
# #         choices=["Single dataset", "Cross-dataset"],
# #         label="Deduplication Type",
# #         value="Cross-dataset",  # Set "Cross-dataset" as the default value
# #     )

# #     with gr.Row():
# #         dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
# #         dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
# #         dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

# #     dataset2_inputs = gr.Column(visible=True)  # Make dataset2_inputs visible by default
# #     with dataset2_inputs:
# #         gr.Markdown("### Dataset 2")
# #         with gr.Row():
# #             dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
# #             dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
# #             dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

# #     threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
# #     compute_button = gr.Button("Deduplicate")
# #     status_output = gr.Markdown(elem_id="status_output")
# #     result_output = gr.Markdown()

# #     def update_visibility(choice: str):
# #         return gr.update(visible=choice == "Cross-dataset")

# #     deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)

# #     compute_button.click(
# #         fn=perform_deduplication,
# #         inputs=[
# #             deduplication_type,
# #             dataset1_name,
# #             dataset1_split,
# #             dataset1_text_column,
# #             dataset2_name,
# #             dataset2_split,
# #             dataset2_text_column,
# #             threshold,
# #         ],
# #         outputs=[status_output, result_output],
# #     )


# # demo.launch()

# # # import gradio as gr
# # # from datasets import load_dataset
# # # import numpy as np
# # # from model2vec import StaticModel
# # # from reach import Reach
# # # from difflib import ndiff

# # # # Load the model
# # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# # # # Default parameters
# # # default_dataset_name = "sst2"
# # # default_dataset_split = "train"
# # # default_text_column = "sentence"
# # # default_threshold = 0.9

# # # def deduplicate_embeddings(
# # #     embeddings_a: np.ndarray,
# # #     embeddings_b: np.ndarray = None,
# # #     threshold: float = 0.9,
# # #     batch_size: int = 1024,
# # #     progress=None
# # # ) -> tuple[np.ndarray, dict[int, int]]:
# # #     """
# # #     Deduplicate embeddings within one dataset or across two datasets.

# # #     :param embeddings_a: Embeddings of Dataset 1.
# # #     :param embeddings_b: Optional, embeddings of Dataset 2.
# # #     :param threshold: Similarity threshold for deduplication.
# # #     :param batch_size: Batch size for similarity computation.
# # #     :param progress: Gradio progress tracker for feedback.
# # #     :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
# # #     """
# # #     if embeddings_b is None:
# # #         reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
# # #         duplicate_to_original = {}
# # #         results = reach.nearest_neighbor_threshold(
# # #             embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
# # #         )
# # #         for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
# # #             for sim_idx, _ in similar_items:
# # #                 sim_idx = int(sim_idx)
# # #                 if sim_idx != i and sim_idx not in duplicate_to_original:
# # #                     duplicate_to_original[sim_idx] = i
# # #         deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
# # #         return deduplicated_indices, duplicate_to_original
# # #     else:
# # #         reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
# # #         duplicate_indices_in_b = []
# # #         duplicate_to_original = {}
# # #         results = reach.nearest_neighbor_threshold(
# # #             embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
# # #         )
# # #         for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
# # #             if similar_items:
# # #                 duplicate_indices_in_b.append(i)
# # #                 duplicate_to_original[i] = int(similar_items[0][0])
# # #         return duplicate_indices_in_b, duplicate_to_original

# # # def display_word_differences(x: str, y: str) -> str:
# # #     """
# # #     Display the word-level differences between two texts, formatted to avoid
# # #     misinterpretation of Markdown syntax.

# # #     :param x: First text.
# # #     :param y: Second text.
# # #     :return: A string showing word-level differences, wrapped in a code block.
# # #     """
# # #     diff = ndiff(x.split(), y.split())
# # #     formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
# # #     return f"```\n{formatted_diff}\n```"

# # # def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
# # #     """
# # #     Load texts from a specified dataset and split.

# # #     :param dataset_name: Name of the dataset.
# # #     :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
# # #     :param text_column: Name of the text column.
# # #     :return: A list of texts from the dataset.
# # #     """
# # #     ds = load_dataset(dataset_name, split=dataset_split)
# # #     return [example[text_column] for example in ds]

# # # def perform_deduplication(
# # #     deduplication_type: str,
# # #     dataset1_name: str,
# # #     dataset1_split: str,
# # #     dataset1_text_column: str,
# # #     dataset2_name: str = "",
# # #     dataset2_split: str = "",
# # #     dataset2_text_column: str = "",
# # #     threshold: float = default_threshold,
# # #     progress: gr.Progress = gr.Progress(track_tqdm=True)
# # # ):
# # #     """
# # #     Perform deduplication on one or two datasets based on the deduplication type.

# # #     :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
# # #     :param dataset1_name: Name of the first dataset.
# # #     :param dataset1_split: Split of the first dataset.
# # #     :param dataset1_text_column: Text column of the first dataset.
# # #     :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
# # #     :param dataset2_split: Optional, split of the second dataset.
# # #     :param dataset2_text_column: Optional, text column of the second dataset.
# # #     :param threshold: Similarity threshold for deduplication.
# # #     :param progress: Gradio progress tracker.
# # #     :return: Status updates and result text for the Gradio interface.
# # #     """
# # #     try:
# # #         threshold = float(threshold)

# # #         # Load and process Dataset 1
# # #         yield "Loading Dataset 1...", ""
# # #         texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
# # #         yield "Computing embeddings for Dataset 1...", ""
# # #         embeddings1 = model.encode(texts1, show_progressbar=True)

# # #         if deduplication_type == "Single dataset":
# # #             # Deduplicate within Dataset 1
# # #             yield "Deduplicating within Dataset 1...", ""
# # #             deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
# # #                 embeddings1, threshold=threshold, progress=progress
# # #             )

# # #             num_duplicates = len(duplicate_mapping)
# # #             result_text = (
# # #                 f"**Total documents:** {len(texts1)}\n\n"
# # #                 f"**Duplicates found:** {num_duplicates}\n\n"
# # #                 f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
# # #             )

# # #             if num_duplicates > 0:
# # #                 result_text += "**Sample duplicates:**\n\n"
# # #                 for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
# # #                     orig_text = texts1[orig_idx]
# # #                     dup_text = texts1[dup_idx]
# # #                     differences = display_word_differences(orig_text, dup_text)
# # #                     result_text += (
# # #                         f"**Original:**\n{orig_text}\n\n"
# # #                         f"**Duplicate:**\n{dup_text}\n\n"
# # #                         f"**Differences:**\n{differences}\n"
# # #                         + "-" * 50 + "\n\n"
# # #                     )
# # #             else:
# # #                 result_text += "No duplicates found."

# # #             yield "Deduplication completed.", result_text

# # #         else:
# # #             # Load and process Dataset 2
# # #             yield "Loading Dataset 2...", ""
# # #             texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
# # #             yield "Computing embeddings for Dataset 2...", ""
# # #             embeddings2 = model.encode(texts2, show_progressbar=True)

# # #             # Deduplicate Dataset 2 against Dataset 1
# # #             yield "Deduplicating Dataset 2 against Dataset 1...", ""
# # #             duplicate_indices, duplicate_mapping = deduplicate_embeddings(
# # #                 embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
# # #             )

# # #             num_duplicates = len(duplicate_indices)
# # #             result_text = (
# # #                 f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
# # #                 f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
# # #                 f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
# # #             )

# # #             if num_duplicates > 0:
# # #                 result_text += "**Sample duplicates from Dataset 2:**\n\n"
# # #                 for idx in duplicate_indices[:5]:
# # #                     orig_text = texts1[duplicate_mapping[idx]]
# # #                     dup_text = texts2[idx]
# # #                     differences = display_word_differences(orig_text, dup_text)
# # #                     result_text += (
# # #                         f"**Original (Dataset 1):**\n{orig_text}\n\n"
# # #                         f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
# # #                         f"**Differences:**\n{differences}\n"
# # #                         + "-" * 50 + "\n\n"
# # #                     )
# # #             else:
# # #                 result_text += "No duplicates found."

# # #             yield "Deduplication completed.", result_text

# # #     except Exception as e:
# # #         yield f"An error occurred: {e}", ""
# # #         raise e

# # # # Gradio app with stop button support
# # # with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
# # #     gr.Markdown("# Semantic Deduplication")
# # #     gr.Markdown("""
# # #     This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
# # #     It can be used to identify duplicate texts within a single dataset or across two datasets.
# # #     You can adjust the similarity threshold to control the strictness of the deduplication.\n
# # #     NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
# # #     """)

# # #     deduplication_type = gr.Radio(
# # #         choices=["Single dataset", "Cross-dataset"],
# # #         label="Deduplication Type",
# # #         value="Single dataset",
# # #     )

# # #     with gr.Row():
# # #         dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
# # #         dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
# # #         dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

# # #     dataset2_inputs = gr.Column(visible=False)
# # #     with dataset2_inputs:
# # #         gr.Markdown("### Dataset 2")
# # #         with gr.Row():
# # #             dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
# # #             dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
# # #             dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

# # #     threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
# # #     compute_button = gr.Button("Deduplicate")
# # #     status_output = gr.Markdown(elem_id="status_output")
# # #     result_output = gr.Markdown()

# # #     def update_visibility(choice: str):
# # #         return gr.update(visible=choice == "Cross-dataset")

# # #     deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)

# # #     compute_button.click(
# # #         fn=perform_deduplication,
# # #         inputs=[
# # #             deduplication_type,
# # #             dataset1_name,
# # #             dataset1_split,
# # #             dataset1_text_column,
# # #             dataset2_name,
# # #             dataset2_split,
# # #             dataset2_text_column,
# # #             threshold,
# # #         ],
# # #         outputs=[status_output, result_output],
# # #     )


# # # demo.launch()