File size: 36,564 Bytes
0f23291 2a7516c 0f23291 587e0bc a0c1c09 2dbb46e 587e0bc a0c1c09 587e0bc d37faa6 587e0bc d37faa6 587e0bc d37faa6 587e0bc d37faa6 6584652 79cb6e1 fc25316 d37faa6 1d20349 fe4ed4c dec2f9b fe4ed4c dec2f9b fe4ed4c dec2f9b fe4ed4c 78df5f4 dec2f9b 78df5f4 dec2f9b 587e0bc 305d1af c148460 2dbb46e 587e0bc 2dbb46e 587e0bc 2dbb46e c148460 2dbb46e 587e0bc c148460 2dbb46e 587e0bc 2dbb46e 587e0bc 2dbb46e 79cb6e1 2dbb46e 587e0bc 2dbb46e 79cb6e1 2dbb46e 79cb6e1 2dbb46e 79cb6e1 587e0bc 4f35c65 587e0bc 2dbb46e 587e0bc 79cb6e1 2dbb46e 587e0bc 4f35c65 2dbb46e 587e0bc c148460 79cb6e1 c6efeae 79cb6e1 587e0bc 4db9f63 4f35c65 587e0bc 4f35c65 587e0bc 4f35c65 587e0bc 4f35c65 4db9f63 4f35c65 4db9f63 4f35c65 4db9f63 587e0bc 4f9fa17 587e0bc 1ddd951 6ebe143 587e0bc a860139 587e0bc 305d1af 587e0bc c148460 587e0bc fc25316 587e0bc fc25316 587e0bc 98d976c 587e0bc 98d976c fc25316 98d976c 628f62f 4f9fa17 587e0bc 628f62f 587e0bc 98d976c 587e0bc 628f62f c148460 587e0bc 4f9fa17 4db9f63 402e797 4db9f63 c148460 fc25316 402e797 fc25316 c148460 4db9f63 79cb6e1 c148460 587e0bc 4db9f63 c148460 628f62f c148460 a860139 4f9fa17 a860139 4f9fa17 a860139 fc25316 a860139 fc25316 a860139 4f9fa17 a860139 587e0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
import os
# Set HF_HOME for caching
os.environ["HF_HOME"] = "src/data_cache"
import streamlit as st
import pandas as pd
import altair as alt
from huggingface_hub import HfApi, HfFileSystem
import json
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
# Page config
st.set_page_config(
page_title="Grounding Benchmark Leaderboard",
page_icon="π―",
layout="wide"
)
# Constants
REPO_ID = "mlfoundations-cua-dev/leaderboard"
GROUNDING_PATH = "grounding"
# Baselines for different datasets
BASELINES = {
"screenspot-v2": {
"Qwen2-VL-7B": {
"desktop_text": 52.01, "desktop_icon": 44.98, "web_text": 33.04, "web_icon": 21.84, "overall": 37.96
},
"UI-TARS-2B": {
"desktop_text": 90.7, "desktop_icon": 68.6, "web_text": 87.2, "web_icon": 84.7, "overall": 82.8
},
"UI-TARS-7B": {
"desktop_text": 95.4, "desktop_icon": 87.8, "web_text": 93.8, "web_icon": 91.6, "overall": 92.2
},
"UI-TARS-72B": {
"desktop_text": 91.2, "desktop_icon": 87.8, "web_text": 87.7, "web_icon": 86.3, "overall": 88.3
},
"Qwen2.5-VL-3B-Instruct": {"desktop_text": 54.1, "desktop_icon": 30.0, "web_text": 31.2, "web_icon": 48.3, "overall": 41.5},
"Qwen2.5-VL-7B-Instruct": {"desktop_text": 87.6, "desktop_icon": 65.7, "web_text": 90.2, "web_icon": 79.8, "overall": 81.9},
},
"screenspot-pro": {
"Qwen2.5-VL-3B-Instruct": {
"overall": 16.1,
"text": 23.6,
"icon": 3.8
},
"Qwen2.5-VL-7B-Instruct": {
"overall": 26.8,
"text": 38.9,
"icon": 7.1
},
"Qwen2.5-VL-72B-Instruct": {
"overall": 53.3,
},
"UI-TARS-2B": {
"overall": 27.7,
"text": 39.6,
"icon": 8.4
},
"UI-TARS-7B": {
"overall": 35.7,
"text": 47.8,
"icon": 16.2
},
"UI-TARS-72B": {
"overall": 38.1,
"text": 50.9,
"icon": 17.6
}
},
"showdown-clicks": {
"UI-TARS-2B": {"overall": 59.8},
"UI-TARS-7B": {"overall": 66.1},
"UI-TARS-1.5-7B": {"overall": 67.2},
},
"osworld-g": {
"Operator": {"overall": 40.6},
"Gemini-2.5-Pro": {"overall": 45.2},
"Seed1.5-VL": {"overall": 62.9},
"Qwen2.5VL-3B": {"overall": 27.3},
"OS-Atlas-7B": {"overall": 27.7},
"Qwen2.5VL-7B": {"overall": 31.4},
"UGround-7B": {"overall": 36.4},
"Aguvis-7B": {"overall": 38.7},
"UI-TARS-7B": {"overall": 47.5},
"Qwen2.5-VL-32B": {"overall": 59.6},
"Jedi-3B": {"overall": 50.9},
"Jedi-7B": {"overall": 54.1},
"UI-TARS-72B": {"overall": 57.1},
"Qwen2.5-VL-72B": {"overall": 62.2},
"UI-TARS-1.5-7B": {"overall": 64.2},
"GTAI-7B": {"overall": 67.7},
"GTAI-32B": {"overall": 61.9},
"GTAI-72B": {"overall": 66.7},
}
}
@st.cache_data() # Cache without TTL - manual refresh only
def fetch_leaderboard_data():
"""Fetch all grounding results from HuggingFace leaderboard by streaming JSON files."""
api = HfApi()
fs = HfFileSystem()
try:
# List all files in the grounding directory
files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
results = []
# Create progress bar for loading
progress_bar = st.progress(0)
status_text = st.empty()
for idx, file_path in enumerate(grounding_files):
try:
# Update progress
progress = (idx + 1) / len(grounding_files)
progress_bar.progress(progress)
status_text.text(f"Loading {idx + 1}/{len(grounding_files)} files...")
# Stream the JSON file content directly from HuggingFace
file_url = f"datasets/{REPO_ID}/{file_path}"
# Read the file content directly without downloading
with fs.open(file_url, 'r') as f:
data = json.load(f)
# Extract only the necessary information
metadata = data.get("metadata", {})
metrics = data.get("metrics", {})
detailed_results = data.get("detailed_results", {})
# Parse the file path to get dataset and model info
path_parts = file_path.split('/')
dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
# Get model name from metadata or path
model_checkpoint = metadata.get("model_checkpoint", "")
model_name = model_checkpoint.split('/')[-1]
base_model_name = None
is_checkpoint = False
# Handle checkpoint names
if not model_name and len(path_parts) > 2:
# Check if it's a checkpoint subdirectory structure
if len(path_parts) > 3 and path_parts[2] != path_parts[3]:
# Format: grounding/dataset/base_model/checkpoint.json
base_model_name = path_parts[2]
checkpoint_file = path_parts[3].replace(".json", "")
model_name = f"{base_model_name}/{checkpoint_file}"
is_checkpoint = True
else:
# Regular format: grounding/dataset/results_modelname.json
model_name = path_parts[2].replace("results_", "").replace(".json", "")
base_model_name = model_name
# Check if model name indicates a checkpoint
if 'checkpoint-' in model_name:
is_checkpoint = True
if not base_model_name:
# Extract base model name from full path
if '/' in model_name:
parts = model_name.split('/')
base_model_name = parts[0]
else:
# Try to get from model_checkpoint path
checkpoint_parts = model_checkpoint.split('/')
if len(checkpoint_parts) > 1:
base_model_name = checkpoint_parts[-2]
# Extract UI type results if available
ui_type_results = detailed_results.get("by_ui_type", {})
dataset_type_results = detailed_results.get("by_dataset_type", {})
results_by_file = detailed_results.get("by_file", {})
# Create a compact result entry (only keep what we need for visualization)
result_entry = {
"dataset": dataset_name,
"model": model_name,
"base_model": base_model_name or model_name,
"is_checkpoint": is_checkpoint,
"model_path": model_checkpoint,
"overall_accuracy": metrics.get("accuracy", 0) * 100, # Convert to percentage
"total_samples": metrics.get("total", 0),
"timestamp": metadata.get("evaluation_timestamp", ""),
"checkpoint_steps": metadata.get("checkpoint_steps"),
"training_loss": metadata.get("training_loss"),
"ui_type_results": ui_type_results,
"dataset_type_results": dataset_type_results,
"results_by_file": results_by_file
}
results.append(result_entry)
except Exception as e:
st.warning(f"Error loading {file_path}: {str(e)}")
continue
# Clear progress indicators
progress_bar.empty()
status_text.empty()
# Create DataFrame
df = pd.DataFrame(results)
# Adjust evaluated results for osworld-g (do not touch baselines)
if not df.empty and 'dataset' in df.columns and 'overall_accuracy' in df.columns:
osworld_mask = df['dataset'] == 'osworld-g'
if osworld_mask.any():
df.loc[osworld_mask, 'overall_accuracy'] = (
df.loc[osworld_mask, 'overall_accuracy'] * 0.90425531914
)
# Process checkpoints: for each base model, find the best checkpoint
if not df.empty:
# Group by dataset and base_model
grouped = df.groupby(['dataset', 'base_model'])
# For each group, find the best checkpoint
best_models = []
for (dataset, base_model), group in grouped:
if len(group) > 1:
# Multiple entries for this model (likely checkpoints)
best_idx = group['overall_accuracy'].idxmax()
best_row = group.loc[best_idx].copy()
# Check if the best is the last checkpoint
checkpoint_steps = group[group['checkpoint_steps'].notna()]['checkpoint_steps'].sort_values()
if len(checkpoint_steps) > 0:
last_checkpoint_steps = checkpoint_steps.iloc[-1]
best_checkpoint_steps = best_row['checkpoint_steps']
if pd.notna(best_checkpoint_steps) and best_checkpoint_steps != last_checkpoint_steps:
# Best checkpoint is not the last one, add asterisk
best_row['model'] = best_row['model'] + '*'
best_row['is_best_not_last'] = True
else:
best_row['is_best_not_last'] = False
# Store all checkpoints for this model
best_row['all_checkpoints'] = group.to_dict('records')
best_models.append(best_row)
else:
# Single entry for this model
row = group.iloc[0].copy()
row['is_best_not_last'] = False
row['all_checkpoints'] = [row.to_dict()]
best_models.append(row)
# Create new dataframe with best models
df_best = pd.DataFrame(best_models)
return df_best
return df
except Exception as e:
st.error(f"Error fetching leaderboard data: {str(e)}")
return pd.DataFrame()
def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
"""Parse UI type metrics from the results dataframe."""
metrics_list = []
for _, row in df.iterrows():
if row['dataset'] != dataset_filter:
continue
model = row['model']
ui_results = row.get('ui_type_results', {})
dataset_type_results = row.get('dataset_type_results', {})
results_by_file = row.get('results_by_file', {})
# For ScreenSpot datasets
if 'screenspot' in dataset_filter.lower():
# Check if we have desktop/web breakdown in results_by_file
desktop_file = None
web_file = None
for filename, file_results in results_by_file.items():
if 'desktop' in filename.lower():
desktop_file = file_results
elif 'web' in filename.lower():
web_file = file_results
if desktop_file and web_file:
# We have desktop/web breakdown
desktop_text = desktop_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
desktop_icon = desktop_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
web_text = web_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
web_icon = web_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
# Calculate averages
desktop_avg = (desktop_text + desktop_icon) / 2 if (desktop_text > 0 or desktop_icon > 0) else 0
web_avg = (web_text + web_icon) / 2 if (web_text > 0 or web_icon > 0) else 0
text_avg = (desktop_text + web_text) / 2 if (desktop_text > 0 or web_text > 0) else 0
icon_avg = (desktop_icon + web_icon) / 2 if (desktop_icon > 0 or web_icon > 0) else 0
# For screenspot-v2, calculate the overall as average of desktop and web
if dataset_filter == 'screenspot-v2':
overall = (desktop_avg + web_avg) / 2 if (desktop_avg > 0 or web_avg > 0) else row['overall_accuracy']
else:
overall = row['overall_accuracy']
metrics_list.append({
'model': model,
'desktop_text': desktop_text,
'desktop_icon': desktop_icon,
'web_text': web_text,
'web_icon': web_icon,
'desktop_avg': desktop_avg,
'web_avg': web_avg,
'text_avg': text_avg,
'icon_avg': icon_avg,
'overall': overall,
'is_best_not_last': row.get('is_best_not_last', False),
'all_checkpoints': row.get('all_checkpoints', [])
})
elif 'text' in ui_results and 'icon' in ui_results:
# Simple text/icon structure without desktop/web breakdown
text_acc = (ui_results.get('text', {}).get('correct', 0) / max(ui_results.get('text', {}).get('total', 1), 1)) * 100
icon_acc = (ui_results.get('icon', {}).get('correct', 0) / max(ui_results.get('icon', {}).get('total', 1), 1)) * 100
metrics_list.append({
'model': model,
'text': text_acc,
'icon': icon_acc,
'overall': row['overall_accuracy'],
'is_best_not_last': row.get('is_best_not_last', False),
'all_checkpoints': row.get('all_checkpoints', [])
})
else:
# Try to get from dataset_type_results if available
found_data = False
for dataset_key in dataset_type_results:
if 'screenspot' in dataset_key.lower():
dataset_data = dataset_type_results[dataset_key]
if 'by_ui_type' in dataset_data:
ui_data = dataset_data['by_ui_type']
text_data = ui_data.get('text', {})
icon_data = ui_data.get('icon', {})
text_acc = (text_data.get('correct', 0) / max(text_data.get('total', 1), 1)) * 100
icon_acc = (icon_data.get('correct', 0) / max(icon_data.get('total', 1), 1)) * 100
metrics_list.append({
'model': model,
'text': text_acc,
'icon': icon_acc,
'overall': row['overall_accuracy'],
'is_best_not_last': row.get('is_best_not_last', False),
'all_checkpoints': row.get('all_checkpoints', [])
})
found_data = True
break
if not found_data:
# No UI type data available, just use overall
metrics_list.append({
'model': model,
'overall': row['overall_accuracy'],
'is_best_not_last': row.get('is_best_not_last', False),
'all_checkpoints': row.get('all_checkpoints', [])
})
else:
# For non-screenspot datasets, just pass through overall accuracy
metrics_list.append({
'model': model,
'overall': row['overall_accuracy'],
'is_best_not_last': row.get('is_best_not_last', False),
'all_checkpoints': row.get('all_checkpoints', [])
})
return pd.DataFrame(metrics_list)
def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
"""Create a bar chart for a specific metric."""
# Prepare data for the chart
chart_data = []
# Add model results
for _, row in data.iterrows():
if metric in row and row[metric] > 0:
chart_data.append({
'Model': row['model'],
'Score': row[metric],
'Type': 'Evaluated'
})
# Add baselines if available
dataset = st.session_state.get('selected_dataset', '')
if dataset in BASELINES:
for baseline_name, baseline_metrics in BASELINES[dataset].items():
metric_key = metric.replace('_avg', '').replace('avg', 'overall')
if metric_key in baseline_metrics:
baseline_value = baseline_metrics[metric_key]
# Check performance bounds if filter is enabled
should_include = True
if st.session_state.get('perf_filter_enabled', False):
filter_metric = st.session_state.get('perf_filter_metric', 'overall')
min_perf = st.session_state.get('perf_filter_min', 0.0)
max_perf = st.session_state.get('perf_filter_max', 100.0)
# Only filter if we're filtering by the same metric being displayed
if filter_metric == metric and (baseline_value < min_perf or baseline_value > max_perf):
should_include = False
# Or if filtering by a different metric, check that metric's value
elif filter_metric != metric and filter_metric in baseline_metrics:
filter_value = baseline_metrics[filter_metric]
if filter_value < min_perf or filter_value > max_perf:
should_include = False
if should_include:
chart_data.append({
'Model': baseline_name,
'Score': baseline_value,
'Type': 'Baseline'
})
if not chart_data:
return None
df_chart = pd.DataFrame(chart_data)
# Create the bar chart
chart = alt.Chart(df_chart).mark_bar().encode(
x=alt.X('Model:N',
sort=alt.EncodingSortField(field='Score', order='descending'),
axis=alt.Axis(labelAngle=-45)),
y=alt.Y('Score:Q',
scale=alt.Scale(domain=[0, 100]),
axis=alt.Axis(title='Score (%)')),
color=alt.Color('Type:N',
scale=alt.Scale(domain=['Evaluated', 'Baseline'],
range=['#4ECDC4', '#FFA726'])),
tooltip=['Model', 'Score', 'Type']
).properties(
title=title,
width=500,
height=400
)
# Add value labels
text = chart.mark_text(
align='center',
baseline='bottom',
dy=-5
).encode(
text=alt.Text('Score:Q', format='.1f')
)
return chart + text
def create_results_table(data: pd.DataFrame, dataset: str):
"""Create a formatted results table with best scores highlighted."""
if data.empty:
return None
# Copy data to avoid modifying original
table_data = data.copy()
# Remove columns we don't want to display
columns_to_drop = ['is_best_not_last', 'all_checkpoints']
table_data = table_data.drop(columns=[col for col in columns_to_drop if col in table_data.columns])
# Sort by overall score in descending order
if 'overall' in table_data.columns:
table_data = table_data.sort_values('overall', ascending=False)
# Determine which columns to show based on dataset
if dataset == 'screenspot-v2':
# Show all breakdown columns
column_order = ['model', 'desktop_text', 'desktop_icon', 'web_text', 'web_icon',
'desktop_avg', 'web_avg', 'text_avg', 'icon_avg', 'overall']
column_names = {
'model': 'Model',
'desktop_text': 'Desktop Text',
'desktop_icon': 'Desktop Icon',
'web_text': 'Web Text',
'web_icon': 'Web Icon',
'desktop_avg': 'Desktop Avg',
'web_avg': 'Web Avg',
'text_avg': 'Text Avg',
'icon_avg': 'Icon Avg',
'overall': 'Overall'
}
elif 'text' in table_data.columns and 'icon' in table_data.columns:
# Show text/icon breakdown
column_order = ['model', 'text', 'icon', 'overall']
column_names = {
'model': 'Model',
'text': 'Text',
'icon': 'Icon',
'overall': 'Overall'
}
else:
# Show only overall
column_order = ['model', 'overall']
column_names = {
'model': 'Model',
'overall': 'Overall'
}
# Filter and reorder columns
available_columns = [col for col in column_order if col in table_data.columns]
table_data = table_data[available_columns]
# Rename columns for display
table_data = table_data.rename(columns=column_names)
# Round numeric columns to 1 decimal place
numeric_columns = [col for col in table_data.columns if col != 'Model']
for col in numeric_columns:
if col in table_data.columns:
table_data[col] = table_data[col].round(1)
# Apply styling to highlight best scores
def highlight_best(s):
"""Highlight the best score in each column."""
if s.name == 'Model':
return [''] * len(s)
# Find the maximum value
max_val = s.max()
# Return style for each cell
return ['font-weight: bold; color: #2E7D32' if v == max_val else '' for v in s]
# Style the dataframe
styled_table = table_data.style.apply(highlight_best)
# Format numbers to show 1 decimal place
format_dict = {col: '{:.1f}' for col in numeric_columns if col in table_data.columns}
styled_table = styled_table.format(format_dict)
return styled_table
def main():
st.title("π― Grounding Benchmark Leaderboard")
st.markdown("Visualization of model performance on grounding benchmarks")
# Add refresh button
col1, col2 = st.columns([1, 5])
with col1:
if st.button("π Refresh", help="Refresh leaderboard data from HuggingFace"):
st.cache_data.clear()
st.rerun()
# Fetch data
with st.spinner("Loading leaderboard data..."):
df = fetch_leaderboard_data()
if df.empty:
st.warning("No data available in the leaderboard.")
return
# Sidebar filters
st.sidebar.header("Filters")
# Dataset filter
datasets = sorted(df['dataset'].unique())
# Check if dataset has changed
if 'previous_dataset' not in st.session_state:
st.session_state['previous_dataset'] = None
selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
# Reset selected models if dataset changed
if selected_dataset != st.session_state.get('previous_dataset'):
st.session_state['selected_models'] = None # This will trigger default selection
st.session_state['previous_dataset'] = selected_dataset
st.session_state['selected_dataset'] = selected_dataset
# Filter data
filtered_df = df[df['dataset'] == selected_dataset]
# Model filter - changed to multiselect for selective visualization
st.sidebar.subheader("Select Models to Display")
all_models = sorted(filtered_df['model'].unique())
# Add "Select All" / "Deselect All" buttons
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all"):
st.session_state['selected_models'] = all_models
with col2:
if st.button("Deselect All", key="deselect_all"):
st.session_state['selected_models'] = []
# Initialize selected models if not in session state
if 'selected_models' not in st.session_state or st.session_state['selected_models'] is None:
st.session_state['selected_models'] = all_models
# Multi-select widget for models
selected_models = st.sidebar.multiselect(
"Models to visualize:",
options=all_models,
default=st.session_state.get('selected_models', all_models),
key='model_multiselect'
)
# Update session state
st.session_state['selected_models'] = selected_models
# Filter dataframe based on selected models
if selected_models:
filtered_df = filtered_df[filtered_df['model'].isin(selected_models)]
else:
# If no models selected, show empty dataframe
filtered_df = pd.DataFrame()
# Performance bounds filter
st.sidebar.divider()
st.sidebar.subheader("Performance Filters")
# Enable/disable performance filtering
enable_perf_filter = st.sidebar.checkbox("Enable performance bounds", value=False)
if enable_perf_filter:
# Get the metric to filter on
filter_metric_help = "Filter models based on their performance in the selected metric"
# Determine available metrics for filtering
if selected_dataset == 'screenspot-v2':
filter_metrics = ['overall', 'desktop_text', 'desktop_icon', 'web_text', 'web_icon']
filter_metric_names = {
'overall': 'Overall Average',
'desktop_text': 'Desktop (Text)',
'desktop_icon': 'Desktop (Icon)',
'web_text': 'Web (Text)',
'web_icon': 'Web (Icon)'
}
elif selected_dataset == 'screenspot-pro':
filter_metrics = ['overall', 'text', 'icon']
filter_metric_names = {
'overall': 'Overall Average',
'text': 'Text',
'icon': 'Icon'
}
else:
filter_metrics = ['overall']
filter_metric_names = {'overall': 'Overall Average'}
# Metric selector for filtering
filter_metric = st.sidebar.selectbox(
"Filter by metric:",
options=filter_metrics,
format_func=lambda x: filter_metric_names[x],
help=filter_metric_help
)
# Performance bounds inputs
col1, col2 = st.sidebar.columns(2)
with col1:
min_perf = st.number_input(
"Min %",
min_value=0.0,
max_value=100.0,
value=0.0,
step=5.0,
help="Minimum performance threshold"
)
with col2:
max_perf = st.number_input(
"Max %",
min_value=0.0,
max_value=100.0,
value=100.0,
step=5.0,
help="Maximum performance threshold"
)
# Store filter settings in session state
st.session_state['perf_filter_enabled'] = True
st.session_state['perf_filter_metric'] = filter_metric
st.session_state['perf_filter_min'] = min_perf
st.session_state['perf_filter_max'] = max_perf
else:
st.session_state['perf_filter_enabled'] = False
# Main content
st.header(f"Results for {selected_dataset}")
# Check if any models are selected
if filtered_df.empty:
st.warning("No models selected. Please select at least one model from the sidebar to visualize results.")
return
# Overall metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Models Evaluated", len(filtered_df))
with col2:
if not filtered_df.empty:
best_acc = filtered_df['overall_accuracy'].max()
best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
with col3:
total_samples = filtered_df['total_samples'].sum()
st.metric("Total Samples Evaluated", f"{total_samples:,}")
# Parse UI type metrics
ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
# Apply performance bounds filter if enabled
if st.session_state.get('perf_filter_enabled', False) and not ui_metrics_df.empty:
filter_metric = st.session_state.get('perf_filter_metric', 'overall')
min_perf = st.session_state.get('perf_filter_min', 0.0)
max_perf = st.session_state.get('perf_filter_max', 100.0)
# Check if the filter metric exists in the dataframe
if filter_metric in ui_metrics_df.columns:
# Filter models based on performance bounds
ui_metrics_df = ui_metrics_df[
(ui_metrics_df[filter_metric] >= min_perf) &
(ui_metrics_df[filter_metric] <= max_perf)
]
# Update selected models to only include those within bounds
models_in_bounds = ui_metrics_df['model'].tolist()
filtered_models = [m for m in selected_models if m in models_in_bounds]
# Show info about filtered models
total_models = len(selected_models)
shown_models = len(filtered_models)
if shown_models < total_models:
st.info(f"Showing {shown_models} of {total_models} selected models within performance bounds ({min_perf:.1f}% - {max_perf:.1f}% {filter_metric})")
# Add metric selector for screenspot datasets
selected_metric = 'overall' # Default metric
if not ui_metrics_df.empty:
# Metric selector dropdown
if selected_dataset == 'screenspot-v2':
metric_options = {
'overall': 'Overall Average (Desktop + Web) / 2',
'desktop_text': 'Desktop (Text)',
'desktop_icon': 'Desktop (Icon)',
'web_text': 'Web (Text)',
'web_icon': 'Web (Icon)',
}
elif selected_dataset == 'screenspot-pro':
metric_options = {
'overall': 'Overall Average',
'text': 'Text',
'icon': 'Icon'
}
else:
# For showdown-clicks, only show overall average
metric_options = {
'overall': 'Overall Average'
}
selected_metric = st.selectbox(
"Select metric to visualize:",
options=list(metric_options.keys()),
format_func=lambda x: metric_options[x],
key="metric_selector"
)
# Add note about asterisks
if any(ui_metrics_df['is_best_not_last']):
st.info("* indicates the best checkpoint is not the last checkpoint")
# Create single chart for selected metric
chart = create_bar_chart(ui_metrics_df, selected_metric, metric_options[selected_metric])
if chart:
st.altair_chart(chart, use_container_width=True)
else:
st.warning(f"No data available for {metric_options[selected_metric]}")
# Display results table
st.subheader("π Results Table")
# Use the already filtered ui_metrics_df which respects performance bounds
if not ui_metrics_df.empty:
table_df = ui_metrics_df.copy()
# Add baselines to the table if available
if selected_dataset in BASELINES:
baseline_rows = []
for baseline_name, baseline_metrics in BASELINES[selected_dataset].items():
baseline_row = {'model': f"{baseline_name} (baseline)"}
# Map baseline metrics to table columns
if selected_dataset == 'screenspot-v2':
baseline_row.update({
'desktop_text': baseline_metrics.get('desktop_text', 0),
'desktop_icon': baseline_metrics.get('desktop_icon', 0),
'web_text': baseline_metrics.get('web_text', 0),
'web_icon': baseline_metrics.get('web_icon', 0),
'overall': baseline_metrics.get('overall', 0)
})
# Calculate averages if not provided
if 'desktop_text' in baseline_metrics and 'desktop_icon' in baseline_metrics:
baseline_row['desktop_avg'] = (baseline_metrics['desktop_text'] + baseline_metrics['desktop_icon']) / 2
if 'web_text' in baseline_metrics and 'web_icon' in baseline_metrics:
baseline_row['web_avg'] = (baseline_metrics['web_text'] + baseline_metrics['web_icon']) / 2
if 'desktop_text' in baseline_metrics and 'web_text' in baseline_metrics:
baseline_row['text_avg'] = (baseline_metrics['desktop_text'] + baseline_metrics['web_text']) / 2
if 'desktop_icon' in baseline_metrics and 'web_icon' in baseline_metrics:
baseline_row['icon_avg'] = (baseline_metrics['desktop_icon'] + baseline_metrics['web_icon']) / 2
elif selected_dataset == 'screenspot-pro':
baseline_row.update({
'overall': baseline_metrics.get('overall', 0),
'text': baseline_metrics.get('text', 0),
'icon': baseline_metrics.get('icon', 0)
})
else:
# For other datasets (showdown-clicks, etc.)
baseline_row['overall'] = baseline_metrics.get('overall', 0)
# Apply performance filter to baselines if enabled
should_include_baseline = True
if st.session_state.get('perf_filter_enabled', False):
filter_metric = st.session_state.get('perf_filter_metric', 'overall')
min_perf = st.session_state.get('perf_filter_min', 0.0)
max_perf = st.session_state.get('perf_filter_max', 100.0)
if filter_metric in baseline_row:
metric_value = baseline_row[filter_metric]
if metric_value < min_perf or metric_value > max_perf:
should_include_baseline = False
if should_include_baseline:
baseline_rows.append(baseline_row)
# Append baselines to table
if baseline_rows:
baseline_df = pd.DataFrame(baseline_rows)
table_df = pd.concat([table_df, baseline_df], ignore_index=True)
# Create and display the styled table
styled_table = create_results_table(table_df, selected_dataset)
if styled_table is not None:
st.dataframe(styled_table, use_container_width=True, hide_index=True)
else:
st.info("No data available for the selected models.")
else:
st.info("No detailed metrics available for this dataset.")
if __name__ == "__main__":
main() |