File size: 36,564 Bytes
0f23291
 
2a7516c
0f23291
587e0bc
 
a0c1c09
2dbb46e
587e0bc
 
 
a0c1c09
 
587e0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37faa6
587e0bc
 
d37faa6
587e0bc
 
d37faa6
587e0bc
 
d37faa6
6584652
 
 
79cb6e1
 
fc25316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37faa6
 
1d20349
 
 
fe4ed4c
 
dec2f9b
 
 
fe4ed4c
dec2f9b
fe4ed4c
dec2f9b
 
fe4ed4c
78df5f4
dec2f9b
 
 
78df5f4
 
dec2f9b
 
 
587e0bc
 
 
305d1af
c148460
2dbb46e
587e0bc
2dbb46e
587e0bc
 
 
 
 
 
 
2dbb46e
c148460
 
 
 
2dbb46e
587e0bc
c148460
 
 
 
 
2dbb46e
 
 
 
 
587e0bc
 
2dbb46e
587e0bc
 
 
 
 
 
 
 
 
2dbb46e
 
79cb6e1
 
2dbb46e
 
587e0bc
2dbb46e
 
 
79cb6e1
2dbb46e
79cb6e1
 
2dbb46e
 
 
79cb6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587e0bc
 
 
 
4f35c65
587e0bc
2dbb46e
 
587e0bc
 
79cb6e1
 
2dbb46e
587e0bc
 
 
 
 
 
4f35c65
 
2dbb46e
 
 
587e0bc
 
 
 
 
c148460
 
 
 
79cb6e1
 
 
c6efeae
 
 
 
 
 
 
 
79cb6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587e0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9f63
 
4f35c65
587e0bc
4f35c65
587e0bc
4f35c65
 
 
587e0bc
4f35c65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9f63
 
 
 
 
4f35c65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9f63
4f35c65
 
 
 
 
 
 
 
 
4db9f63
 
 
 
 
 
 
 
587e0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9fa17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587e0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ddd951
 
6ebe143
587e0bc
 
 
 
 
 
 
 
 
 
 
 
 
a860139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587e0bc
 
 
305d1af
 
 
 
 
 
 
587e0bc
 
c148460
 
587e0bc
 
 
 
 
 
 
 
 
 
fc25316
 
 
 
 
587e0bc
fc25316
 
 
 
 
 
587e0bc
 
 
 
 
98d976c
 
 
587e0bc
98d976c
 
 
 
 
 
 
 
 
 
fc25316
98d976c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f62f
4f9fa17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587e0bc
628f62f
587e0bc
98d976c
 
 
 
 
587e0bc
628f62f
c148460
 
 
 
 
 
 
 
 
 
587e0bc
 
 
 
4f9fa17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9f63
 
402e797
4db9f63
c148460
 
 
 
 
 
 
 
fc25316
 
 
 
 
 
402e797
fc25316
c148460
 
 
 
 
 
 
 
 
 
4db9f63
79cb6e1
c148460
 
587e0bc
4db9f63
c148460
 
628f62f
c148460
 
a860139
 
 
 
4f9fa17
a860139
4f9fa17
a860139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc25316
 
 
 
 
 
a860139
fc25316
a860139
 
4f9fa17
 
 
 
 
 
 
 
 
 
 
 
 
 
a860139
 
 
 
 
 
 
 
 
 
 
 
 
 
587e0bc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
import os
# Set HF_HOME for caching
os.environ["HF_HOME"] = "src/data_cache"

import streamlit as st
import pandas as pd
import altair as alt
from huggingface_hub import HfApi, HfFileSystem
import json
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np

# Page config
st.set_page_config(
    page_title="Grounding Benchmark Leaderboard",
    page_icon="🎯",
    layout="wide"
)

# Constants
REPO_ID = "mlfoundations-cua-dev/leaderboard"
GROUNDING_PATH = "grounding"

# Baselines for different datasets
BASELINES = {
    "screenspot-v2": {
        "Qwen2-VL-7B": {
            "desktop_text": 52.01, "desktop_icon": 44.98, "web_text": 33.04, "web_icon": 21.84, "overall": 37.96
        },
        "UI-TARS-2B": {
            "desktop_text": 90.7, "desktop_icon": 68.6, "web_text": 87.2, "web_icon": 84.7, "overall": 82.8
        },
        "UI-TARS-7B": {
            "desktop_text": 95.4, "desktop_icon": 87.8, "web_text": 93.8, "web_icon": 91.6, "overall": 92.2
        },
        "UI-TARS-72B": {
            "desktop_text": 91.2, "desktop_icon": 87.8, "web_text": 87.7, "web_icon": 86.3, "overall": 88.3
        },
        "Qwen2.5-VL-3B-Instruct": {"desktop_text": 54.1, "desktop_icon": 30.0, "web_text": 31.2, "web_icon": 48.3, "overall": 41.5},
        "Qwen2.5-VL-7B-Instruct": {"desktop_text": 87.6, "desktop_icon": 65.7, "web_text": 90.2, "web_icon": 79.8, "overall": 81.9},
    },
    "screenspot-pro": {
        "Qwen2.5-VL-3B-Instruct": {
            "overall": 16.1,
            "text": 23.6,
            "icon": 3.8 
        },
        "Qwen2.5-VL-7B-Instruct": {
            "overall": 26.8,
            "text": 38.9,
            "icon": 7.1  
        },
        "Qwen2.5-VL-72B-Instruct": {
            "overall": 53.3,
        },
        "UI-TARS-2B": {
            "overall": 27.7,
            "text": 39.6,
            "icon": 8.4  
        },
        "UI-TARS-7B": {
            "overall": 35.7,
            "text": 47.8,
            "icon": 16.2  
        },
        "UI-TARS-72B": {
            "overall": 38.1,
            "text": 50.9,
            "icon": 17.6  
        }
    },
    "showdown-clicks": {
        "UI-TARS-2B": {"overall": 59.8},
        "UI-TARS-7B": {"overall":  66.1},
        "UI-TARS-1.5-7B": {"overall": 67.2},
    },
    "osworld-g": {
        "Operator": {"overall": 40.6},
        "Gemini-2.5-Pro": {"overall": 45.2},
        "Seed1.5-VL": {"overall": 62.9},
        "Qwen2.5VL-3B": {"overall": 27.3},
        "OS-Atlas-7B": {"overall": 27.7},
        "Qwen2.5VL-7B": {"overall": 31.4},
        "UGround-7B": {"overall": 36.4},
        "Aguvis-7B": {"overall": 38.7},
        "UI-TARS-7B": {"overall": 47.5},
        "Qwen2.5-VL-32B": {"overall": 59.6},
        "Jedi-3B": {"overall": 50.9},
        "Jedi-7B": {"overall": 54.1},
        "UI-TARS-72B": {"overall": 57.1},
        "Qwen2.5-VL-72B": {"overall": 62.2},
        "UI-TARS-1.5-7B": {"overall": 64.2},
        "GTAI-7B": {"overall": 67.7},
        "GTAI-32B": {"overall": 61.9},
        "GTAI-72B": {"overall": 66.7},
    }
}

@st.cache_data()  # Cache without TTL - manual refresh only
def fetch_leaderboard_data():
    """Fetch all grounding results from HuggingFace leaderboard by streaming JSON files."""
    api = HfApi()
    fs = HfFileSystem()
    
    try:
        # List all files in the grounding directory
        files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
        grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
        
        results = []
        
        # Create progress bar for loading
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        for idx, file_path in enumerate(grounding_files):
            try:
                # Update progress
                progress = (idx + 1) / len(grounding_files)
                progress_bar.progress(progress)
                status_text.text(f"Loading {idx + 1}/{len(grounding_files)} files...")
                
                # Stream the JSON file content directly from HuggingFace
                file_url = f"datasets/{REPO_ID}/{file_path}"
                
                # Read the file content directly without downloading
                with fs.open(file_url, 'r') as f:
                    data = json.load(f)
                
                # Extract only the necessary information
                metadata = data.get("metadata", {})
                metrics = data.get("metrics", {})
                detailed_results = data.get("detailed_results", {})
                
                # Parse the file path to get dataset and model info
                path_parts = file_path.split('/')
                dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
                
                # Get model name from metadata or path
                model_checkpoint = metadata.get("model_checkpoint", "")
                model_name = model_checkpoint.split('/')[-1]
                base_model_name = None
                is_checkpoint = False
                
                # Handle checkpoint names
                if not model_name and len(path_parts) > 2:
                    # Check if it's a checkpoint subdirectory structure
                    if len(path_parts) > 3 and path_parts[2] != path_parts[3]:
                        # Format: grounding/dataset/base_model/checkpoint.json
                        base_model_name = path_parts[2]
                        checkpoint_file = path_parts[3].replace(".json", "")
                        model_name = f"{base_model_name}/{checkpoint_file}"
                        is_checkpoint = True
                    else:
                        # Regular format: grounding/dataset/results_modelname.json
                        model_name = path_parts[2].replace("results_", "").replace(".json", "")
                        base_model_name = model_name
                
                # Check if model name indicates a checkpoint
                if 'checkpoint-' in model_name:
                    is_checkpoint = True
                    if not base_model_name:
                        # Extract base model name from full path
                        if '/' in model_name:
                            parts = model_name.split('/')
                            base_model_name = parts[0]
                        else:
                            # Try to get from model_checkpoint path
                            checkpoint_parts = model_checkpoint.split('/')
                            if len(checkpoint_parts) > 1:
                                base_model_name = checkpoint_parts[-2]
                
                # Extract UI type results if available
                ui_type_results = detailed_results.get("by_ui_type", {})
                dataset_type_results = detailed_results.get("by_dataset_type", {})
                results_by_file = detailed_results.get("by_file", {})
                
                # Create a compact result entry (only keep what we need for visualization)
                result_entry = {
                    "dataset": dataset_name,
                    "model": model_name,
                    "base_model": base_model_name or model_name,
                    "is_checkpoint": is_checkpoint,
                    "model_path": model_checkpoint,
                    "overall_accuracy": metrics.get("accuracy", 0) * 100,  # Convert to percentage
                    "total_samples": metrics.get("total", 0),
                    "timestamp": metadata.get("evaluation_timestamp", ""),
                    "checkpoint_steps": metadata.get("checkpoint_steps"),
                    "training_loss": metadata.get("training_loss"),
                    "ui_type_results": ui_type_results,
                    "dataset_type_results": dataset_type_results,
                    "results_by_file": results_by_file
                }
                
                results.append(result_entry)
                
            except Exception as e:
                st.warning(f"Error loading {file_path}: {str(e)}")
                continue
        
        # Clear progress indicators
        progress_bar.empty()
        status_text.empty()
        
        # Create DataFrame
        df = pd.DataFrame(results)
        
        # Adjust evaluated results for osworld-g (do not touch baselines)
        if not df.empty and 'dataset' in df.columns and 'overall_accuracy' in df.columns:
            osworld_mask = df['dataset'] == 'osworld-g'
            if osworld_mask.any():
                df.loc[osworld_mask, 'overall_accuracy'] = (
                    df.loc[osworld_mask, 'overall_accuracy'] * 0.90425531914
                )
        
        # Process checkpoints: for each base model, find the best checkpoint
        if not df.empty:
            # Group by dataset and base_model
            grouped = df.groupby(['dataset', 'base_model'])
            
            # For each group, find the best checkpoint
            best_models = []
            for (dataset, base_model), group in grouped:
                if len(group) > 1:
                    # Multiple entries for this model (likely checkpoints)
                    best_idx = group['overall_accuracy'].idxmax()
                    best_row = group.loc[best_idx].copy()
                    
                    # Check if the best is the last checkpoint
                    checkpoint_steps = group[group['checkpoint_steps'].notna()]['checkpoint_steps'].sort_values()
                    if len(checkpoint_steps) > 0:
                        last_checkpoint_steps = checkpoint_steps.iloc[-1]
                        best_checkpoint_steps = best_row['checkpoint_steps']
                        if pd.notna(best_checkpoint_steps) and best_checkpoint_steps != last_checkpoint_steps:
                            # Best checkpoint is not the last one, add asterisk
                            best_row['model'] = best_row['model'] + '*'
                            best_row['is_best_not_last'] = True
                        else:
                            best_row['is_best_not_last'] = False
                    
                    # Store all checkpoints for this model
                    best_row['all_checkpoints'] = group.to_dict('records')
                    best_models.append(best_row)
                else:
                    # Single entry for this model
                    row = group.iloc[0].copy()
                    row['is_best_not_last'] = False
                    row['all_checkpoints'] = [row.to_dict()]
                    best_models.append(row)
            
            # Create new dataframe with best models
            df_best = pd.DataFrame(best_models)
            return df_best
        
        return df
    
    except Exception as e:
        st.error(f"Error fetching leaderboard data: {str(e)}")
        return pd.DataFrame()

def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
    """Parse UI type metrics from the results dataframe."""
    metrics_list = []
    
    for _, row in df.iterrows():
        if row['dataset'] != dataset_filter:
            continue
            
        model = row['model']
        ui_results = row.get('ui_type_results', {})
        dataset_type_results = row.get('dataset_type_results', {})
        results_by_file = row.get('results_by_file', {})
        
        # For ScreenSpot datasets
        if 'screenspot' in dataset_filter.lower():
            # Check if we have desktop/web breakdown in results_by_file
            desktop_file = None
            web_file = None
            
            for filename, file_results in results_by_file.items():
                if 'desktop' in filename.lower():
                    desktop_file = file_results
                elif 'web' in filename.lower():
                    web_file = file_results
            
            if desktop_file and web_file:
                # We have desktop/web breakdown
                desktop_text = desktop_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
                desktop_icon = desktop_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
                web_text = web_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
                web_icon = web_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
                
                # Calculate averages
                desktop_avg = (desktop_text + desktop_icon) / 2 if (desktop_text > 0 or desktop_icon > 0) else 0
                web_avg = (web_text + web_icon) / 2 if (web_text > 0 or web_icon > 0) else 0
                text_avg = (desktop_text + web_text) / 2 if (desktop_text > 0 or web_text > 0) else 0
                icon_avg = (desktop_icon + web_icon) / 2 if (desktop_icon > 0 or web_icon > 0) else 0
                
                # For screenspot-v2, calculate the overall as average of desktop and web
                if dataset_filter == 'screenspot-v2':
                    overall = (desktop_avg + web_avg) / 2 if (desktop_avg > 0 or web_avg > 0) else row['overall_accuracy']
                else:
                    overall = row['overall_accuracy']
                
                metrics_list.append({
                    'model': model,
                    'desktop_text': desktop_text,
                    'desktop_icon': desktop_icon,
                    'web_text': web_text,
                    'web_icon': web_icon,
                    'desktop_avg': desktop_avg,
                    'web_avg': web_avg,
                    'text_avg': text_avg,
                    'icon_avg': icon_avg,
                    'overall': overall,
                    'is_best_not_last': row.get('is_best_not_last', False),
                    'all_checkpoints': row.get('all_checkpoints', [])
                })
            elif 'text' in ui_results and 'icon' in ui_results:
                # Simple text/icon structure without desktop/web breakdown
                text_acc = (ui_results.get('text', {}).get('correct', 0) / max(ui_results.get('text', {}).get('total', 1), 1)) * 100
                icon_acc = (ui_results.get('icon', {}).get('correct', 0) / max(ui_results.get('icon', {}).get('total', 1), 1)) * 100
                
                metrics_list.append({
                    'model': model,
                    'text': text_acc,
                    'icon': icon_acc,
                    'overall': row['overall_accuracy'],
                    'is_best_not_last': row.get('is_best_not_last', False),
                    'all_checkpoints': row.get('all_checkpoints', [])
                })
            else:
                # Try to get from dataset_type_results if available
                found_data = False
                for dataset_key in dataset_type_results:
                    if 'screenspot' in dataset_key.lower():
                        dataset_data = dataset_type_results[dataset_key]
                        if 'by_ui_type' in dataset_data:
                            ui_data = dataset_data['by_ui_type']
                            text_data = ui_data.get('text', {})
                            icon_data = ui_data.get('icon', {})
                            
                            text_acc = (text_data.get('correct', 0) / max(text_data.get('total', 1), 1)) * 100
                            icon_acc = (icon_data.get('correct', 0) / max(icon_data.get('total', 1), 1)) * 100
                            
                            metrics_list.append({
                                'model': model,
                                'text': text_acc,
                                'icon': icon_acc,
                                'overall': row['overall_accuracy'],
                                'is_best_not_last': row.get('is_best_not_last', False),
                                'all_checkpoints': row.get('all_checkpoints', [])
                            })
                            found_data = True
                            break
                
                if not found_data:
                    # No UI type data available, just use overall
                    metrics_list.append({
                        'model': model,
                        'overall': row['overall_accuracy'],
                        'is_best_not_last': row.get('is_best_not_last', False),
                        'all_checkpoints': row.get('all_checkpoints', [])
                    })
        else:
            # For non-screenspot datasets, just pass through overall accuracy
            metrics_list.append({
                'model': model,
                'overall': row['overall_accuracy'],
                'is_best_not_last': row.get('is_best_not_last', False),
                'all_checkpoints': row.get('all_checkpoints', [])
            })
    
    return pd.DataFrame(metrics_list)

def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
    """Create a bar chart for a specific metric."""
    # Prepare data for the chart
    chart_data = []
    
    # Add model results
    for _, row in data.iterrows():
        if metric in row and row[metric] > 0:
            chart_data.append({
                'Model': row['model'],
                'Score': row[metric],
                'Type': 'Evaluated'
            })
    
    # Add baselines if available
    dataset = st.session_state.get('selected_dataset', '')
    if dataset in BASELINES:
        for baseline_name, baseline_metrics in BASELINES[dataset].items():
            metric_key = metric.replace('_avg', '').replace('avg', 'overall')
            if metric_key in baseline_metrics:
                baseline_value = baseline_metrics[metric_key]
                
                # Check performance bounds if filter is enabled
                should_include = True
                if st.session_state.get('perf_filter_enabled', False):
                    filter_metric = st.session_state.get('perf_filter_metric', 'overall')
                    min_perf = st.session_state.get('perf_filter_min', 0.0)
                    max_perf = st.session_state.get('perf_filter_max', 100.0)
                    
                    # Only filter if we're filtering by the same metric being displayed
                    if filter_metric == metric and (baseline_value < min_perf or baseline_value > max_perf):
                        should_include = False
                    # Or if filtering by a different metric, check that metric's value
                    elif filter_metric != metric and filter_metric in baseline_metrics:
                        filter_value = baseline_metrics[filter_metric]
                        if filter_value < min_perf or filter_value > max_perf:
                            should_include = False
                
                if should_include:
                    chart_data.append({
                        'Model': baseline_name,
                        'Score': baseline_value,
                        'Type': 'Baseline'
                    })
    
    if not chart_data:
        return None
    
    df_chart = pd.DataFrame(chart_data)
    
    # Create the bar chart
    chart = alt.Chart(df_chart).mark_bar().encode(
        x=alt.X('Model:N', 
                sort=alt.EncodingSortField(field='Score', order='descending'),
                axis=alt.Axis(labelAngle=-45)),
        y=alt.Y('Score:Q', 
                scale=alt.Scale(domain=[0, 100]),
                axis=alt.Axis(title='Score (%)')),
        color=alt.Color('Type:N', 
                       scale=alt.Scale(domain=['Evaluated', 'Baseline'],
                                     range=['#4ECDC4', '#FFA726'])),
        tooltip=['Model', 'Score', 'Type']
    ).properties(
        title=title,
        width=500,  
        height=400
    )
    
    # Add value labels
    text = chart.mark_text(
        align='center',
        baseline='bottom',
        dy=-5
    ).encode(
        text=alt.Text('Score:Q', format='.1f')
    )
    
    return chart + text

def create_results_table(data: pd.DataFrame, dataset: str):
    """Create a formatted results table with best scores highlighted."""
    if data.empty:
        return None
    
    # Copy data to avoid modifying original
    table_data = data.copy()
    
    # Remove columns we don't want to display
    columns_to_drop = ['is_best_not_last', 'all_checkpoints']
    table_data = table_data.drop(columns=[col for col in columns_to_drop if col in table_data.columns])
    
    # Sort by overall score in descending order
    if 'overall' in table_data.columns:
        table_data = table_data.sort_values('overall', ascending=False)
    
    # Determine which columns to show based on dataset
    if dataset == 'screenspot-v2':
        # Show all breakdown columns
        column_order = ['model', 'desktop_text', 'desktop_icon', 'web_text', 'web_icon', 
                       'desktop_avg', 'web_avg', 'text_avg', 'icon_avg', 'overall']
        column_names = {
            'model': 'Model',
            'desktop_text': 'Desktop Text',
            'desktop_icon': 'Desktop Icon', 
            'web_text': 'Web Text',
            'web_icon': 'Web Icon',
            'desktop_avg': 'Desktop Avg',
            'web_avg': 'Web Avg',
            'text_avg': 'Text Avg',
            'icon_avg': 'Icon Avg',
            'overall': 'Overall'
        }
    elif 'text' in table_data.columns and 'icon' in table_data.columns:
        # Show text/icon breakdown
        column_order = ['model', 'text', 'icon', 'overall']
        column_names = {
            'model': 'Model',
            'text': 'Text',
            'icon': 'Icon',
            'overall': 'Overall'
        }
    else:
        # Show only overall
        column_order = ['model', 'overall']
        column_names = {
            'model': 'Model',
            'overall': 'Overall'
        }
    
    # Filter and reorder columns
    available_columns = [col for col in column_order if col in table_data.columns]
    table_data = table_data[available_columns]
    
    # Rename columns for display
    table_data = table_data.rename(columns=column_names)
    
    # Round numeric columns to 1 decimal place
    numeric_columns = [col for col in table_data.columns if col != 'Model']
    for col in numeric_columns:
        if col in table_data.columns:
            table_data[col] = table_data[col].round(1)
    
    # Apply styling to highlight best scores
    def highlight_best(s):
        """Highlight the best score in each column."""
        if s.name == 'Model':
            return [''] * len(s)
        
        # Find the maximum value
        max_val = s.max()
        # Return style for each cell
        return ['font-weight: bold; color: #2E7D32' if v == max_val else '' for v in s]
    
    # Style the dataframe
    styled_table = table_data.style.apply(highlight_best)
    
    # Format numbers to show 1 decimal place
    format_dict = {col: '{:.1f}' for col in numeric_columns if col in table_data.columns}
    styled_table = styled_table.format(format_dict)
    
    return styled_table

def main():
    st.title("🎯 Grounding Benchmark Leaderboard")
    st.markdown("Visualization of model performance on grounding benchmarks")
    
    # Add refresh button
    col1, col2 = st.columns([1, 5])
    with col1:
        if st.button("πŸ”„ Refresh", help="Refresh leaderboard data from HuggingFace"):
            st.cache_data.clear()
            st.rerun()
    
    # Fetch data
    with st.spinner("Loading leaderboard data..."):
        df = fetch_leaderboard_data()
    
    if df.empty:
        st.warning("No data available in the leaderboard.")
        return
    
    # Sidebar filters
    st.sidebar.header("Filters")
    
    # Dataset filter
    datasets = sorted(df['dataset'].unique())
    
    # Check if dataset has changed
    if 'previous_dataset' not in st.session_state:
        st.session_state['previous_dataset'] = None
    
    selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
    
    # Reset selected models if dataset changed
    if selected_dataset != st.session_state.get('previous_dataset'):
        st.session_state['selected_models'] = None  # This will trigger default selection
        st.session_state['previous_dataset'] = selected_dataset
    
    st.session_state['selected_dataset'] = selected_dataset
    
    # Filter data
    filtered_df = df[df['dataset'] == selected_dataset]
    
    # Model filter - changed to multiselect for selective visualization
    st.sidebar.subheader("Select Models to Display")
    all_models = sorted(filtered_df['model'].unique())
    
    # Add "Select All" / "Deselect All" buttons
    col1, col2 = st.sidebar.columns(2)
    with col1:
        if st.button("Select All", key="select_all"):
            st.session_state['selected_models'] = all_models
    with col2:
        if st.button("Deselect All", key="deselect_all"):
            st.session_state['selected_models'] = []
    
    # Initialize selected models if not in session state
    if 'selected_models' not in st.session_state or st.session_state['selected_models'] is None:
        st.session_state['selected_models'] = all_models
    
    # Multi-select widget for models
    selected_models = st.sidebar.multiselect(
        "Models to visualize:",
        options=all_models,
        default=st.session_state.get('selected_models', all_models),
        key='model_multiselect'
    )
    
    # Update session state
    st.session_state['selected_models'] = selected_models
    
    # Filter dataframe based on selected models
    if selected_models:
        filtered_df = filtered_df[filtered_df['model'].isin(selected_models)]
    else:
        # If no models selected, show empty dataframe
        filtered_df = pd.DataFrame()
    
    # Performance bounds filter
    st.sidebar.divider()
    st.sidebar.subheader("Performance Filters")
    
    # Enable/disable performance filtering
    enable_perf_filter = st.sidebar.checkbox("Enable performance bounds", value=False)
    
    if enable_perf_filter:
        # Get the metric to filter on
        filter_metric_help = "Filter models based on their performance in the selected metric"
        
        # Determine available metrics for filtering
        if selected_dataset == 'screenspot-v2':
            filter_metrics = ['overall', 'desktop_text', 'desktop_icon', 'web_text', 'web_icon']
            filter_metric_names = {
                'overall': 'Overall Average',
                'desktop_text': 'Desktop (Text)',
                'desktop_icon': 'Desktop (Icon)',
                'web_text': 'Web (Text)',
                'web_icon': 'Web (Icon)'
            }
        elif selected_dataset == 'screenspot-pro':
            filter_metrics = ['overall', 'text', 'icon']
            filter_metric_names = {
                'overall': 'Overall Average',
                'text': 'Text',
                'icon': 'Icon'
            }
        else:
            filter_metrics = ['overall']
            filter_metric_names = {'overall': 'Overall Average'}
        
        # Metric selector for filtering
        filter_metric = st.sidebar.selectbox(
            "Filter by metric:",
            options=filter_metrics,
            format_func=lambda x: filter_metric_names[x],
            help=filter_metric_help
        )
        
        # Performance bounds inputs
        col1, col2 = st.sidebar.columns(2)
        with col1:
            min_perf = st.number_input(
                "Min %",
                min_value=0.0,
                max_value=100.0,
                value=0.0,
                step=5.0,
                help="Minimum performance threshold"
            )
        with col2:
            max_perf = st.number_input(
                "Max %",
                min_value=0.0,
                max_value=100.0,
                value=100.0,
                step=5.0,
                help="Maximum performance threshold"
            )
        
        # Store filter settings in session state
        st.session_state['perf_filter_enabled'] = True
        st.session_state['perf_filter_metric'] = filter_metric
        st.session_state['perf_filter_min'] = min_perf
        st.session_state['perf_filter_max'] = max_perf
    else:
        st.session_state['perf_filter_enabled'] = False
    
    # Main content
    st.header(f"Results for {selected_dataset}")
    
    # Check if any models are selected
    if filtered_df.empty:
        st.warning("No models selected. Please select at least one model from the sidebar to visualize results.")
        return
    
    # Overall metrics
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Models Evaluated", len(filtered_df))
    with col2:
        if not filtered_df.empty:
            best_acc = filtered_df['overall_accuracy'].max()
            best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
            st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
    with col3:
        total_samples = filtered_df['total_samples'].sum()
        st.metric("Total Samples Evaluated", f"{total_samples:,}")
    
    # Parse UI type metrics
    ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
    
    # Apply performance bounds filter if enabled
    if st.session_state.get('perf_filter_enabled', False) and not ui_metrics_df.empty:
        filter_metric = st.session_state.get('perf_filter_metric', 'overall')
        min_perf = st.session_state.get('perf_filter_min', 0.0)
        max_perf = st.session_state.get('perf_filter_max', 100.0)
        
        # Check if the filter metric exists in the dataframe
        if filter_metric in ui_metrics_df.columns:
            # Filter models based on performance bounds
            ui_metrics_df = ui_metrics_df[
                (ui_metrics_df[filter_metric] >= min_perf) & 
                (ui_metrics_df[filter_metric] <= max_perf)
            ]
            
            # Update selected models to only include those within bounds
            models_in_bounds = ui_metrics_df['model'].tolist()
            filtered_models = [m for m in selected_models if m in models_in_bounds]
            
            # Show info about filtered models
            total_models = len(selected_models)
            shown_models = len(filtered_models)
            if shown_models < total_models:
                st.info(f"Showing {shown_models} of {total_models} selected models within performance bounds ({min_perf:.1f}% - {max_perf:.1f}% {filter_metric})")
    
    # Add metric selector for screenspot datasets
    selected_metric = 'overall'  # Default metric
    if not ui_metrics_df.empty:
        # Metric selector dropdown
        if selected_dataset == 'screenspot-v2':
            metric_options = {
                'overall': 'Overall Average (Desktop + Web) / 2',
                'desktop_text': 'Desktop (Text)',
                'desktop_icon': 'Desktop (Icon)',
                'web_text': 'Web (Text)',
                'web_icon': 'Web (Icon)',
            }
        elif selected_dataset == 'screenspot-pro':
            metric_options = {
                'overall': 'Overall Average',
                'text': 'Text',
                'icon': 'Icon'
            }
        else:
            # For showdown-clicks, only show overall average
            metric_options = {
                'overall': 'Overall Average'
            }
        
        selected_metric = st.selectbox(
            "Select metric to visualize:",
            options=list(metric_options.keys()),
            format_func=lambda x: metric_options[x],
            key="metric_selector"
        )
        
        # Add note about asterisks
        if any(ui_metrics_df['is_best_not_last']):
            st.info("* indicates the best checkpoint is not the last checkpoint")
        
        # Create single chart for selected metric
        chart = create_bar_chart(ui_metrics_df, selected_metric, metric_options[selected_metric])
        if chart:
            st.altair_chart(chart, use_container_width=True)
        else:
            st.warning(f"No data available for {metric_options[selected_metric]}")
    
    # Display results table
    st.subheader("πŸ“Š Results Table")
    
    # Use the already filtered ui_metrics_df which respects performance bounds
    if not ui_metrics_df.empty:
        table_df = ui_metrics_df.copy()
        
        # Add baselines to the table if available
        if selected_dataset in BASELINES:
            baseline_rows = []
            for baseline_name, baseline_metrics in BASELINES[selected_dataset].items():
                baseline_row = {'model': f"{baseline_name} (baseline)"}
                
                # Map baseline metrics to table columns
                if selected_dataset == 'screenspot-v2':
                    baseline_row.update({
                        'desktop_text': baseline_metrics.get('desktop_text', 0),
                        'desktop_icon': baseline_metrics.get('desktop_icon', 0),
                        'web_text': baseline_metrics.get('web_text', 0),
                        'web_icon': baseline_metrics.get('web_icon', 0),
                        'overall': baseline_metrics.get('overall', 0)
                    })
                    # Calculate averages if not provided
                    if 'desktop_text' in baseline_metrics and 'desktop_icon' in baseline_metrics:
                        baseline_row['desktop_avg'] = (baseline_metrics['desktop_text'] + baseline_metrics['desktop_icon']) / 2
                    if 'web_text' in baseline_metrics and 'web_icon' in baseline_metrics:
                        baseline_row['web_avg'] = (baseline_metrics['web_text'] + baseline_metrics['web_icon']) / 2
                    if 'desktop_text' in baseline_metrics and 'web_text' in baseline_metrics:
                        baseline_row['text_avg'] = (baseline_metrics['desktop_text'] + baseline_metrics['web_text']) / 2
                    if 'desktop_icon' in baseline_metrics and 'web_icon' in baseline_metrics:
                        baseline_row['icon_avg'] = (baseline_metrics['desktop_icon'] + baseline_metrics['web_icon']) / 2
                elif selected_dataset == 'screenspot-pro':
                    baseline_row.update({
                        'overall': baseline_metrics.get('overall', 0),
                        'text': baseline_metrics.get('text', 0),
                        'icon': baseline_metrics.get('icon', 0)
                    })
                else:
                    # For other datasets (showdown-clicks, etc.)
                    baseline_row['overall'] = baseline_metrics.get('overall', 0)
                
                # Apply performance filter to baselines if enabled
                should_include_baseline = True
                if st.session_state.get('perf_filter_enabled', False):
                    filter_metric = st.session_state.get('perf_filter_metric', 'overall')
                    min_perf = st.session_state.get('perf_filter_min', 0.0)
                    max_perf = st.session_state.get('perf_filter_max', 100.0)
                    
                    if filter_metric in baseline_row:
                        metric_value = baseline_row[filter_metric]
                        if metric_value < min_perf or metric_value > max_perf:
                            should_include_baseline = False
                
                if should_include_baseline:
                    baseline_rows.append(baseline_row)
            
            # Append baselines to table
            if baseline_rows:
                baseline_df = pd.DataFrame(baseline_rows)
                table_df = pd.concat([table_df, baseline_df], ignore_index=True)
        
        # Create and display the styled table
        styled_table = create_results_table(table_df, selected_dataset)
        if styled_table is not None:
            st.dataframe(styled_table, use_container_width=True, hide_index=True)
        else:
            st.info("No data available for the selected models.")
    else:
        st.info("No detailed metrics available for this dataset.")

if __name__ == "__main__":
    main()