Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,641 Bytes
bb60979 688a87d e05052e d430aa2 e05052e 0e53af6 bdb8c95 0e53af6 df5f888 0e53af6 3e074ca 0e53af6 97f30ad 0e53af6 abc934b 3e074ca abc934b 688a87d 0e53af6 df5f888 0e53af6 df5f888 5912d41 df5f888 5912d41 df5f888 5912d41 df5f888 def5662 0e53af6 4e26b97 0e53af6 df5f888 e05052e abc934b 13b9696 9a9a80e abc934b 2c6d54d 2ea650c abc934b 9a9a80e e05052e 9a9a80e dcacf66 0e53af6 7219c6d 9a9a80e 0e53af6 df5f888 0e53af6 abc934b d382dff 7219c6d d382dff c6c8487 89703a3 3c806f9 ed4ba53 06436a8 89703a3 4e84543 89703a3 4e84543 89703a3 06436a8 c6c8487 77b0c52 9a9a80e 038e09d e05052e df5f888 9a9a80e 038e09d 31151c4 0ff1ff1 038e09d c57ffa7 9a9a80e f957cd9 9a9a80e df5f888 c57ffa7 abc934b e05052e df5f888 abc934b fdd69a9 c4a68e7 8373470 fdd69a9 9a9a80e fdd69a9 abc934b fdd69a9 abc934b e05052e 9a9a80e e05052e d382dff c6c8487 b3c367a c6c8487 95c40f8 89703a3 e05052e abc934b df5f888 c2ea813 e05052e df5f888 5912d41 df5f888 5912d41 df5f888 e05052e 0e53af6 01fb1e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
REVISION = "d2e8f9152cc719f1fc3b42b088d65b46ce837462"
try:
import spaces
IN_SPACES = True
except ImportError:
from functools import wraps
import inspect
class spaces:
@staticmethod
def GPU(duration):
def decorator(func):
@wraps(func) # Preserves the original function's metadata
def wrapper(*args, **kwargs):
if inspect.isgeneratorfunction(func):
# If the decorated function is a generator, yield from it
yield from func(*args, **kwargs)
else:
# For regular functions, just return the result
return func(*args, **kwargs)
return wrapper
return decorator
IN_SPACES = False
import torch
import os
import gradio as gr
import json
from queue import Queue
from threading import Thread
from transformers import AutoModelForCausalLM
from PIL import ImageDraw
from torchvision.transforms.v2 import Resize
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
moondream = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream-next",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map={"": "cuda"},
revision=REVISION
)
# CKPT_DIRS = ["/tmp/md-ckpt/ckpt/ft/song-moon-4c-s15/s72001/"]
# def get_ckpt(filename):
# ckpts = [
# torch.load(os.path.join(dir, filename), map_location="cpu") for dir in CKPT_DIRS
# ]
# avg_ckpt = {
# key.replace("._orig_mod", ""): sum(ckpt[key] for ckpt in ckpts) / len(ckpts)
# for key in ckpts[0]
# }
# return avg_ckpt
# moondream.load_state_dict(get_ckpt("model.pt"))
moondream.eval()
def convert_to_entities(text, coords):
"""
Converts a string with special markers into an entity representation.
Markers:
- <|coord|> pairs indicate coordinate markers
- <|start_ground_points|> indicates the start of grounding
- <|start_ground_text|> indicates the start of a ground term
- <|end_ground|> indicates the end of a ground term
Returns:
- Dictionary with cleaned text and entities with their character positions
"""
# Initialize variables
cleaned_text = ""
entities = []
entity = []
# Track current position in cleaned text
current_pos = 0
# Track if we're currently processing an entity
in_entity = False
entity_start = 0
i = 0
while i < len(text):
# Check for markers
if text[i : i + 9] == "<|coord|>":
i += 9
entity.append(coords.pop(0))
continue
elif text[i : i + 23] == "<|start_ground_points|>":
in_entity = True
entity_start = current_pos
i += 23
continue
elif text[i : i + 21] == "<|start_ground_text|>":
entity_start = current_pos
i += 21
continue
elif text[i : i + 14] == "<|end_ground|>":
# Store entity position
entities.append(
{
"entity": json.dumps(entity),
"start": entity_start,
"end": current_pos,
}
)
entity = []
in_entity = False
i += 14
continue
# Add character to cleaned text
cleaned_text += text[i]
current_pos += 1
i += 1
return {"text": cleaned_text, "entities": entities}
@spaces.GPU(duration=30)
def answer_question(img, prompt):
buffer = ""
for new_text in moondream.query(img, prompt, stream=True)["answer"]:
buffer += new_text
yield buffer.strip(), {"text": "Thinking...", "entities": []}
@spaces.GPU(duration=10)
def caption(img, mode):
if img is None:
yield ""
return
buffer = ""
if mode == "Short":
l = "short"
elif mode == "Long":
l = "long"
else:
l = "normal"
for t in moondream.caption(img, length=l, stream=True)["caption"]:
buffer += t
yield buffer.strip()
@spaces.GPU(duration=10)
def detect(img, object):
if img is None:
yield "", gr.update(visible=False, value=None)
return
w, h = img.size
if w > 768 or h > 768:
img = Resize(768)(img)
w, h = img.size
objs = moondream.detect(img, object)["objects"]
draw_image = ImageDraw.Draw(img)
for o in objs:
draw_image.rectangle(
(o["x_min"] * w, o["y_min"] * h, o["x_max"] * w, o["y_max"] * h),
outline="red",
width=3,
)
yield {"text": f"{len(objs)} detected", "entities": []}, gr.update(
visible=True, value=img
)
@spaces.GPU(duration=10)
def point(img, object):
if img is None:
yield "", gr.update(visible=False, value=None)
return
w, h = img.size
if w > 768 or h > 768:
img = Resize(768)(img)
w, h = img.size
objs = moondream.point(img, object)["points"]
draw_image = ImageDraw.Draw(img)
for o in objs:
draw_image.ellipse(
(o["x"] * w - 5, o["y"] * h - 5, o["x"] * w + 5, o["y"] * h + 5),
fill="red",
outline="blue",
width=2,
)
yield {"text": f"{len(objs)} detected", "entities": []}, gr.update(
visible=True, value=img
)
@spaces.GPU(duration=10)
def localized_query(img, x, y, question):
if img is None:
yield "", {"text": "", "entities": []}, gr.update(visible=False, value=None)
return
answer = moondream.query(img, question, spatial_refs=[(x, y)])["answer"]
w, h = img.size
x, y = x * w, y * h
img_clone = img.copy()
draw = ImageDraw.Draw(img_clone)
draw.ellipse(
(x - 5, y - 5, x + 5, y + 5),
fill="red",
outline="blue",
)
yield answer, {"text": "", "entities": []}, gr.update(visible=True, value=img_clone)
js = ""
css = """
.output-text span p {
font-size: 1.4rem !important;
}
.chain-of-thought {
opacity: 0.7 !important;
}
.chain-of-thought span.label {
display: none;
}
.chain-of-thought span.textspan {
padding-right: 0;
}
"""
with gr.Blocks(title="moondream vl (new)", css=css, js=js) as demo:
if IN_SPACES:
# gr.HTML("<style>body, body gradio-app { background: none !important; }</style>")
pass
gr.Markdown(
"""
# 🌔 moondream vl (new)
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
"""
)
mode_radio = gr.Radio(
["Caption", "Query", "Detect", "Point", "Localized"],
show_label=False,
value=lambda: "Caption",
)
input_image = gr.State(None)
with gr.Row():
with gr.Column():
@gr.render(inputs=[mode_radio])
def show_inputs(mode):
if mode == "Query":
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Input",
value="How many people are in this image?",
scale=4,
)
submit = gr.Button("Submit")
img = gr.Image(type="pil", label="Upload an Image")
submit.click(answer_question, [img, prompt], [output, thought])
prompt.submit(answer_question, [img, prompt], [output, thought])
img.change(answer_question, [img, prompt], [output, thought])
img.change(lambda img: img, [img], [input_image])
elif mode == "Caption":
with gr.Group():
with gr.Row():
caption_mode = gr.Radio(
["Short", "Normal", "Long"],
label="Caption Length",
value=lambda: "Normal",
scale=4,
)
submit = gr.Button("Submit")
img = gr.Image(type="pil", label="Upload an Image")
submit.click(caption, [img, caption_mode], output)
img.change(caption, [img, caption_mode], output)
elif mode == "Detect":
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Object",
value="Cat",
scale=4,
)
submit = gr.Button("Submit")
img = gr.Image(type="pil", label="Upload an Image")
submit.click(detect, [img, prompt], [thought, ann])
prompt.submit(detect, [img, prompt], [thought, ann])
img.change(detect, [img, prompt], [thought, ann])
elif mode == "Point":
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Object",
value="Cat",
scale=4,
)
submit = gr.Button("Submit")
img = gr.Image(type="pil", label="Upload an Image")
submit.click(point, [img, prompt], [thought, ann])
prompt.submit(point, [img, prompt], [thought, ann])
img.change(point, [img, prompt], [thought, ann])
elif mode == "Localized":
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Input",
value="What is this?",
scale=4,
)
submit = gr.Button("Submit")
img = gr.Image(type="pil", label="Upload an Image")
x_slider = gr.Slider(label="x", minimum=0, maximum=1)
y_slider = gr.Slider(label="y", minimum=0, maximum=1)
submit.click(localized_query, [img, x_slider, y_slider, prompt], [output, thought, ann])
prompt.submit(localized_query, [img, x_slider, y_slider, prompt], [output, thought, ann])
x_slider.change(localized_query, [img, x_slider, y_slider, prompt], [output, thought, ann])
y_slider.change(localized_query, [img, x_slider, y_slider, prompt], [output, thought, ann])
img.change(localized_query, [img, x_slider, y_slider, prompt], [output, thought, ann])
else:
gr.Markdown("Coming soon!")
with gr.Column():
thought = gr.HighlightedText(
elem_classes=["chain-of-thought"],
label="Thinking tokens",
interactive=False,
)
output = gr.Markdown(label="Response", elem_classes=["output-text"], line_breaks=True)
ann = gr.Image(visible=False)
def on_select(img, evt: gr.SelectData):
if img is None or evt.value[1] is None:
return gr.update(visible=False, value=None)
w, h = img.size
if w > 768 or h > 768:
img = Resize(768)(img)
w, h = img.size
coords = json.loads(evt.value[1])
if len(coords) % 2 != 0:
raise ValueError("Only points supported right now.")
img_clone = img.copy()
draw = ImageDraw.Draw(img_clone)
for i in range(0, len(coords), 2): # Step by 2 to handle x,y pairs
x = int(coords[i] * w)
y = int(coords[i + 1] * h)
draw.ellipse(
(x - 3, y - 3, x + 3, y + 3),
fill="red",
outline="red",
)
return gr.update(visible=True, value=img_clone)
thought.select(on_select, [input_image], [ann])
input_image.change(lambda: gr.update(visible=False), [], [ann])
mode_radio.change(
lambda: ("", "", gr.update(visible=False, value=None)),
[],
[output, thought, ann],
)
demo.queue().launch()
|