File size: 11,268 Bytes
61c89cd
 
 
e21a983
 
 
 
 
 
 
 
 
61c89cd
 
 
16f2307
06d3f6e
e21a983
 
 
 
 
 
 
 
 
 
 
 
7985d5f
20bb366
7985d5f
61c89cd
 
9d3a848
 
 
 
 
 
 
 
 
 
 
 
 
 
61c89cd
 
552490f
 
 
562b4d5
a1e8f93
 
562b4d5
 
bb70c22
0fc6336
1b7ec1b
552490f
6d89f09
aaacefd
 
01cfb27
6d89f09
bb70c22
73b6943
562b4d5
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f75dc
552490f
 
 
 
 
 
 
 
 
 
 
 
 
7985d5f
552490f
 
 
 
 
 
 
61c89cd
 
7985d5f
fc523d1
7985d5f
e1ff384
 
 
 
 
 
20bb366
61c89cd
20bb366
 
fc523d1
c6d02b3
9f1f2bf
1d16cc9
9f1f2bf
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
84291d5
 
f2fa35d
369a3fa
397731d
152480f
397731d
 
 
544df84
f2fa35d
eb977a1
83d3e5a
 
 
61c89cd
7985d5f
fc523d1
7985d5f
b4f9b4b
 
61c89cd
7985d5f
fc523d1
e1ff384
7219c3f
bbff51c
0fc6336
7c7685a
7219c3f
 
 
1b7ec1b
7219c3f
 
1eb986b
3f070dc
b7e54fe
 
 
 
 
 
 
 
 
 
 
9a43a98
011a20c
9a43a98
42f41a3
84810a2
 
 
bb63a49
84810a2
378fec2
cde99b9
9642724
7985d5f
fc523d1
7985d5f
fc523d1
7985d5f
e1ff384
091a4dd
f2d1065
091a4dd
7985d5f
e47b6e5
091a4dd
 
 
 
 
 
 
 
 
 
 
7985d5f
091a4dd
 
 
fc523d1
 
7985d5f
 
f94caf3
 
 
 
 
 
7985d5f
f94caf3
86f936d
7985d5f
f94caf3
091a4dd
f94caf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7985d5f
f94caf3
 
 
7985d5f
f94caf3
091a4dd
f94caf3
 
9a43a98
 
 
 
 
 
f94caf3
 
 
 
 
59db4bc
7985d5f
5930a22
27a4916
 
7985d5f
 
552490f
e13a4c7
 
d5d1663
e13a4c7
61c89cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

# built-in

import os
import subprocess
import logging
import re
import random
import string
import requests
import sys
import warnings

# external

#import spaces
import torch
import gradio as gr
import numpy as np
from lxml.html import fromstring
#from transformers import pipeline
#from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from diffusers.models.modeling_utils import ModelMixin
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
#import jax
#import jax.numpy as jnp
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
from numba.cuda import autojit as gpu, grid
from numba.types import unicode_type as string
# logging

warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
handler2 = logging.StreamHandler(sys.stderr)
handler2.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler2.setFormatter(formatter)
root.addHandler(handler2)

# data

last_motion=None
dtype = torch.float16
result=[]
device = "cuda"
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"
#base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)

fast=True
fps=10
time=1
width=384
height=768
step=40
accu=10

css="""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
    max-width: 15cm;
}
.image-container {
    aspect-ratio: """+str(width)+"/"+str(height)+""" !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

# functionality

@cpu(string(string),cache=True,parallel=True)
def run(cmd):
    
    result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
    if result.returncode != 0:
        logging.error(
            f"Command '{cmd}' failed with exit status code '{result.returncode}'. Exiting..."
        )
        sys.exit()
    return str(result.stdout)
    
@gpu()
def translate(text,lang):

    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    content = resp.content
    html = fromstring(content)
    translated = text
    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret
    
@gpu()
def generate_random_string(length):
    
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))
    
@gpu()
def Piper(image,positive,negative,motion):

    global last_motion
    global ip_loaded

    if last_motion != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.fuse_lora()
            pipe.set_adapters(["motion"], [0.7])
        last_motion = motion

    pipe.to(device,dtype)

    if negative=="":
        return pipe(
            prompt=positive,
            height=height,
            width=width,
            ip_adapter_image=image.convert("RGB").resize((width,height)),
            num_inference_steps=step,
            guidance_scale=accu,
            num_frames=(fps*time)
        )
    
    return pipe(
        prompt=positive,
        negative_prompt=negative,
        height=height,
        width=width,
        ip_adapter_image=image.convert("RGB").resize((width,height)),
        num_inference_steps=step,
        guidance_scale=accu,
        num_frames=(fps*time)
    )

@gpu()
def infer(pm):
    x = grid(1)

    pm = pm[x]

    print("infer: started")
    
    p1 = pm["p"]
    name = generate_random_string[1,32](12)+".png"
    
    neg = pm["n"]
    if neg != "":
        neg = f"{neg} where in the image"

    _do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"]
    if p1 != "":
        _do.append(f"a new {p1} content in the image")
    posi = ", ".join(_do)

    if pm["i"] == None:
        return None
    out = Piper[1,32](pm["i"],posi,neg,pm["m"])
    export_to_gif(out.frames[0],name,fps=fps)
    return name

def handle(i,m,p1,p2,result):

    p1_en = translate[1,32](p1,"english")
    p2_en = translate[1,32](p2,"english")
    pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
    ln = len(result)
    rng = list(range(ln))
    arr = [pm for _ in rng]
    #with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
        #return pool.map(infer,arr)
    ret = infer[ln,32](arr)
    return ret

@gpu()
def ui():

    with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""
                # MULTI-LANGUAGE IMAGE GENERATOR
            """)
            with gr.Row():
                img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
            with gr.Row():
                prompt = gr.Textbox(
                    elem_id="prompt",
                    placeholder="INCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                prompt2 = gr.Textbox(
                    elem_id="prompt2",
                    placeholder="EXCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                    motion = gr.Dropdown(
                        label='CAMERA',
                        show_label=True,
                        container=True,
                        choices=[
                            ("(No Effect)", ""),
                            ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                            ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                            ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                            ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                            ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                            ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                            ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                            ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                        ],
                        value="",
                        interactive=True
                    )
            with gr.Row():
                    run_button = gr.Button("START",elem_classes="btn",scale=0)
            with gr.Row():
                    result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                    result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                
        gr.on(
            triggers=[run_button.click, prompt.submit, prompt2.submit],
            fn=handle,inputs=[img,motion,prompt,prompt2,result],outputs=result
        )
        demo.queue().launch()

@gpu()
def pre():

    pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
    pipe.scheduler = DDIMScheduler(
        clip_sample=False,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="linear",
        timestep_spacing="trailing",
        steps_offset=1
    )
    pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
    pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
    pipe.enable_vae_slicing()
    pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)

@cpu(void(),cache=True,parallel=True)
def entry():
    os.chdir(os.path.abspath(os.path.dirname(__file__)))
    mp.set_start_method("spawn", force=True)
    pre[1,32]()
    ui[1,32]()

# entry

entry()

# end