Spaces:
Running
Running
File size: 42,437 Bytes
89fc06b 7e2a8fb 89fc06b 2f7410c 4deddd3 e21a983 9c588a7 e21a983 fb14070 ce2ea41 5c223cd 8faa958 5c223cd fb4e2c7 5c223cd 06d3f6e d8abae0 e21a983 77e3da3 70bd56f d4b458d 5c223cd df91595 d4b458d 5c223cd 9a76642 df91595 5c223cd c9d72ad 5c223cd b8266b6 7f44c6b 6db6a8d 61c89cd 9d3a848 302bc3b b32fdcf 302bc3b 9d3a848 6db6a8d e453455 552490f 6db6a8d f00f4c4 34de90e e453455 f3a00bf 562b4d5 6db6a8d 3b90fe5 552490f 3b90fe5 552490f 3b90fe5 7985d5f 552490f fef1dcd a5c674b fef1dcd fb4e2c7 fef1dcd a5c674b fef1dcd 552490f 688d8e9 e7348c9 fe55e41 0cd204f e7348c9 fb14070 98ac56e 5c223cd d4b23f6 df91595 3df19d6 5c223cd bf621da 5c223cd df91595 5c223cd df91595 5c223cd b54e3d9 5c223cd df91595 5c223cd fe177e5 723fc44 fe177e5 bf9773d 9a76642 b1aeecd f89f832 f968442 f62d95d f968442 f89f832 f968442 362ca9f f968442 362ca9f 87a02d8 f968442 f62d95d f968442 f89f832 df91595 5cb26b4 fc523d1 a99276a b4f9b4b b8d8aa1 7f44c6b df91595 446a991 8a2ea7d b32fdcf 8a2ea7d f1deaa5 7f44c6b e7149a6 8a2ea7d 3aaecd5 446a991 df91595 446a991 c558c3e 446a991 d4b23f6 446a991 c558c3e 446a991 c558c3e f8c89bf 446a991 f8c89bf 446a991 c558c3e f8c89bf 446a991 df91595 4afc319 75961cb bf621da 7f44c6b bf621da 7f44c6b bf621da 43afd3e f968442 89fc06b f968442 9368cf0 89fc06b 43afd3e 89fc06b 43afd3e 4c5f7a7 43afd3e 4c5f7a7 43afd3e 4c5f7a7 43afd3e 4c5f7a7 ee47803 4c5f7a7 d4b458d bf9773d 34de90e bf621da c2185df df91595 bf621da f3a00bf bf621da b06f535 f89f832 fb42270 d349975 6c8ed64 f89f832 b32fdcf 572edec eebdd59 572edec b32fdcf 86f936d bf621da aca79b5 bf621da 9a76642 fb42270 bf621da aca79b5 bf621da 87d9c22 7f44c6b 77e3da3 7320aa5 762a623 f3a00bf 762a623 8ed5555 fd72ef6 f388e18 446a991 f388e18 446a991 f388e18 446a991 bf9773d 446a991 f3a00bf 446a991 bf9773d 446a991 f3a00bf b7b18e5 f388e18 6c8ed64 c558c3e 5c223cd a1f152d bf621da a1f152d 7f44c6b a1f152d 77e3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 |
import requests
from bs4 import BeautifulSoup
from abc import ABC, abstractmethod
from pathlib import Path
from langdetect import detect as get_language
from typing import List, Optional, Union
from collections import namedtuple
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
import math
from pathlib import Path
from functools import partial
from dataclasses import dataclass
from typing import Any
import pillow_heif
import spaces
import numpy as np
import numpy.typing as npt
import torch
from torch import nn
import gradio as gr
from lxml.html import fromstring
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
MultiUpscaler,
UpscalerCheckpoints,
)
from datetime import datetime
model = T5ForConditionalGeneration.from_pretrained("t5-large")
tokenizer = T5Tokenizer.from_pretrained("t5-large")
def log(msg):
print(f'{datetime.now().time()} {msg}')
Tile = tuple[int, int, Image.Image]
Tiles = list[tuple[int, int, list[Tile]]]
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
return nn.Sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
)
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(self, nf: int = 64, gc: int = 32) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.conv1 = conv_block(nf, gc)
self.conv2 = conv_block(nf + gc, gc)
self.conv3 = conv_block(nf + 2 * gc, gc)
self.conv4 = conv_block(nf + 3 * gc, gc)
# Wrapped in Sequential because of key in state dict.
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(self, nf: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.RDB1 = ResidualDenseBlock_5C(nf)
self.RDB2 = ResidualDenseBlock_5C(nf)
self.RDB3 = ResidualDenseBlock_5C(nf)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class Upsample2x(nn.Module):
"""Upsample 2x."""
def __init__(self) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
class ShortcutBlock(nn.Module):
"""Elementwise sum the output of a submodule to its input"""
def __init__(self, submodule: nn.Module) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.sub = submodule
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.sub(x)
class RRDBNet(nn.Module):
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
assert in_nc % 4 != 0 # in_nc is 3
self.model = nn.Sequential(
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
ShortcutBlock(
nn.Sequential(
*(RRDB(nf) for _ in range(nb)),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
)
),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
# this code is adapted from https://github.com/victorca25/iNNfer
scale2x = 0
scalemin = 6
n_uplayer = 0
out_nc = 0
nb = 0
for block in list(state_dict):
parts = block.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
elif n_parts == 3:
part_num = int(parts[1])
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
scale2x += 1
if part_num > n_uplayer:
n_uplayer = part_num
out_nc = state_dict[block].shape[0]
assert "conv1x1" not in block # no ESRGANPlus
nf = state_dict["model.0.weight"].shape[0]
in_nc = state_dict["model.0.weight"].shape[1]
scale = 2**scale2x
assert out_nc > 0
assert nb > 0
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
w = image.width
h = image.height
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
row_images: list[Tile] = []
y1 = max(min(int(row * dy), h - tile_h), 0)
y2 = min(y1 + tile_h, h)
for col in range(cols):
x1 = max(min(int(col * dx), w - tile_w), 0)
x2 = min(x1 + tile_w, w)
tile = image.crop((x1, y1, x2, y2))
row_images.append((x1, tile_w, tile))
grid.tiles.append((y1, tile_h, row_images))
return grid
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid: Grid):
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
r = r * 255 / grid.overlap
return Image.fromarray(r.astype(np.uint8), "L")
mask_w = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
)
mask_h = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
)
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
combined_row = Image.new("RGB", (grid.image_w, h))
for x, w, tile in row:
if x == 0:
combined_row.paste(tile, (0, 0))
continue
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
if y == 0:
combined_image.paste(combined_row, (0, 0))
continue
combined_image.paste(
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
(0, y),
mask=mask_h,
)
combined_image.paste(
combined_row.crop((0, grid.overlap, combined_row.width, h)),
(0, y + grid.overlap),
)
return combined_image
class UpscalerESRGAN:
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
self.model_path = model_path
self.device = device
self.model = self.load_model(model_path)
self.to(device, dtype)
def __call__(self, img: Image.Image) -> Image.Image:
return self.upscale_without_tiling(img)
def to(self, device: torch.device, dtype: torch.dtype):
self.device = device
self.dtype = dtype
self.model.to(device=device, dtype=dtype)
def load_model(self, path: Path) -> RRDBNet:
filename = path
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
assert upscale == 4, "Only 4x upscaling is supported"
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
model.load_state_dict(state_dict)
model.eval()
return model
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
img_np = np.array(img)
img_np = img_np[:, :, ::-1]
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
img_t = torch.from_numpy(img_np).float() # type: ignore
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
with torch.no_grad():
output = self.model(img_t)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255.0 * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, "RGB")
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
img = img.convert("RGB")
grid = split_grid(img)
newtiles: Tiles = []
scale_factor: int = 1
for y, h, row in grid.tiles:
newrow: list[Tile] = []
for tiledata in row:
x, w, tile = tiledata
output = self.upscale_without_tiling(tile)
scale_factor = output.width // tile.width
newrow.append((x * scale_factor, w * scale_factor, output))
newtiles.append((y * scale_factor, h * scale_factor, newrow))
newgrid = Grid(
newtiles,
grid.tile_w * scale_factor,
grid.tile_h * scale_factor,
grid.image_w * scale_factor,
grid.image_h * scale_factor,
grid.overlap * scale_factor,
)
output = combine_grid(newgrid)
return output
@dataclass(kw_only=True)
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
esrgan: Path
class ESRGANUpscaler(MultiUpscaler):
def __init__(
self,
checkpoints: ESRGANUpscalerCheckpoints,
device: torch.device,
dtype: torch.dtype,
) -> None:
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
def to(self, device: torch.device, dtype: torch.dtype):
self.esrgan.to(device=device, dtype=dtype)
self.sd = self.sd.to(device=device, dtype=dtype)
self.device = device
self.dtype = dtype
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
image = self.esrgan.upscale_with_tiling(image)
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
CHECKPOINTS = ESRGANUpscalerCheckpoints(
unet=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
filename="model.safetensors",
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
)
),
clip_text_encoder=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
filename="model.safetensors",
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
)
),
lda=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
filename="model.safetensors",
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
)
),
controlnet_tile=Path(
hf_hub_download(
repo_id="refiners/controlnet.sd1_5.tile",
filename="model.safetensors",
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
)
),
esrgan=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
negative_embedding=Path(
hf_hub_download(
repo_id="philz1337x/embeddings",
filename="JuggernautNegative-neg.pt",
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
)
),
negative_embedding_key="string_to_param.*",
loras={
"more_details": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="more_details.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
"sdxl_render": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="SDXLrender_v2.0.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
)
}
)
device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE, dtype=DTYPE)
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
base = "black-forest-labs/FLUX.1-schnell"
# precision data
seq=256
width=768
height=768
image_steps=8
img_accu=0
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt2 input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
}
"""
# torch pipes
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
image_pipe.enable_model_cpu_offload()
image_pipe.enable_vae_slicing()
image_pipe.enable_vae_tiling()
# functionality
def upscaler(
input_image: Image.Image,
prompt: str = "Photorealistic, Hyperrealistic, Realistic Photography, High-Quality Photography, Natural.",
negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
seed: int = int(str(random.random()).split(".")[1]),
upscale_factor: int = 2,
controlnet_scale: float = 0.6,
controlnet_decay: float = 1.0,
condition_scale: int = 6,
tile_width: int = 112,
tile_height: int = 144,
denoise_strength: float = 0.35,
num_inference_steps: int = 30,
solver: str = "DDIM",
) -> Image.Image:
log(f'CALL upscaler')
manual_seed(seed)
solver_type: type[Solver] = getattr(solvers, solver)
log(f'DBG upscaler 1')
enhanced_image = enhancer.upscale(
image=input_image,
prompt=prompt,
negative_prompt=negative_prompt,
upscale_factor=upscale_factor,
controlnet_scale=controlnet_scale,
controlnet_scale_decay=controlnet_decay,
condition_scale=condition_scale,
tile_size=(tile_height, tile_width),
denoise_strength=denoise_strength,
num_inference_steps=num_inference_steps,
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
solver_type=solver_type,
)
log(f'RET upscaler')
return enhanced_image
def get_tensor_length(tensor):
nums = list(tensor.size())
ret = 1
for num in nums:
ret = ret * num
return ret
def summarize(
text, max_len=20, min_len=10
):
log(f'CALL summarize')
words = text.split()
if len(words) < 5:
print("Summarization Error: Text is too short, 5 words minimum!")
return text
prefix = "summarize: "
ret = ""
for index in range(math.ceil( len(words) / 500 )):
chunk = " ".join(words[ index*500:(index+1)*500 ])
inputs = tokenizer.encode( prefix + chunk, return_tensors="pt", truncation=False, add_special_tokens=True)
while get_tensor_length(inputs) > max_len:
inputs = model.generate(
inputs,
length_penalty=2.0,
num_beams=4,
early_stopping=True,
max_length=max( get_tensor_length(inputs) // 4 , max_len ),
min_length=min_len
)
toks = tokenizer.decode(inputs[0], skip_special_tokens=True)
ret = ret + ("" if ret == "" else " ") + toks
inputs = tokenizer.encode( prefix + ret, return_tensors="pt", truncation=False)
gen = model.generate(
inputs,
length_penalty=1.0,
num_beams=4,
early_stopping=True,
max_length=max_len,
min_length=min_len
)
summary = tokenizer.decode(gen[0], skip_special_tokens=True)
log(f'RET summarize with summary as {summary}')
return summary
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def pipe_generate_image(p1,p2):
log(f'CALL pipe_generate')
imgs = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=img_accu,
num_images_per_prompt=1,
num_inference_steps=image_steps,
max_sequence_length=seq,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images
log(f'RET pipe_generate')
return imgs
def add_song_cover_text(img,artist,song,height,width):
draw = ImageDraw.Draw(img,mode="RGBA")
rows = 1
labels_distance = 1/3
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(song,font)
x = math.ceil((width - textwidth) / 2)
y = height - (textheight * rows / 2) - (height / 2)
y = math.ceil(y - (height / 2 * labels_distance))
draw.text((x, y), song, (255,255,255,85), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(0,0,0,170))
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(artist,font)
x = math.ceil((width - textwidth) / 2)
y = height - (textheight * rows / 2) - (height / 2)
y = math.ceil(y + (height / 2 * labels_distance))
draw.text((x, y), artist, (0,0,0,85), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(255,255,255,170))
return img
def all_pipes(pos,neg,artist,song):
imgs = pipe_generate_image(pos,neg)
for i in range(len(imgs)):
imgs[i] = upscaler(imgs[i])
return imgs
google_translate_endpoint = "https://translate.google.com/m"
language_codes = {
"afrikaans": "af",
"albanian": "sq",
"amharic": "am",
"arabic": "ar",
"armenian": "hy",
"assamese": "as",
"aymara": "ay",
"azerbaijani": "az",
"bambara": "bm",
"basque": "eu",
"belarusian": "be",
"bengali": "bn",
"bhojpuri": "bho",
"bosnian": "bs",
"bulgarian": "bg",
"catalan": "ca",
"cebuano": "ceb",
"chichewa": "ny",
"chinese (simplified)": "zh-CN",
"chinese (traditional)": "zh-TW",
"corsican": "co",
"croatian": "hr",
"czech": "cs",
"danish": "da",
"dhivehi": "dv",
"dogri": "doi",
"dutch": "nl",
"english": "en",
"esperanto": "eo",
"estonian": "et",
"ewe": "ee",
"filipino": "tl",
"finnish": "fi",
"french": "fr",
"frisian": "fy",
"galician": "gl",
"georgian": "ka",
"german": "de",
"greek": "el",
"guarani": "gn",
"gujarati": "gu",
"haitian creole": "ht",
"hausa": "ha",
"hawaiian": "haw",
"hebrew": "iw",
"hindi": "hi",
"hmong": "hmn",
"hungarian": "hu",
"icelandic": "is",
"igbo": "ig",
"ilocano": "ilo",
"indonesian": "id",
"irish": "ga",
"italian": "it",
"japanese": "ja",
"javanese": "jw",
"kannada": "kn",
"kazakh": "kk",
"khmer": "km",
"kinyarwanda": "rw",
"konkani": "gom",
"korean": "ko",
"krio": "kri",
"kurdish (kurmanji)": "ku",
"kurdish (sorani)": "ckb",
"kyrgyz": "ky",
"lao": "lo",
"latin": "la",
"latvian": "lv",
"lingala": "ln",
"lithuanian": "lt",
"luganda": "lg",
"luxembourgish": "lb",
"macedonian": "mk",
"maithili": "mai",
"malagasy": "mg",
"malay": "ms",
"malayalam": "ml",
"maltese": "mt",
"maori": "mi",
"marathi": "mr",
"meiteilon (manipuri)": "mni-Mtei",
"mizo": "lus",
"mongolian": "mn",
"myanmar": "my",
"nepali": "ne",
"norwegian": "no",
"odia (oriya)": "or",
"oromo": "om",
"pashto": "ps",
"persian": "fa",
"polish": "pl",
"portuguese": "pt",
"punjabi": "pa",
"quechua": "qu",
"romanian": "ro",
"russian": "ru",
"samoan": "sm",
"sanskrit": "sa",
"scots gaelic": "gd",
"sepedi": "nso",
"serbian": "sr",
"sesotho": "st",
"shona": "sn",
"sindhi": "sd",
"sinhala": "si",
"slovak": "sk",
"slovenian": "sl",
"somali": "so",
"spanish": "es",
"sundanese": "su",
"swahili": "sw",
"swedish": "sv",
"tajik": "tg",
"tamil": "ta",
"tatar": "tt",
"telugu": "te",
"thai": "th",
"tigrinya": "ti",
"tsonga": "ts",
"turkish": "tr",
"turkmen": "tk",
"twi": "ak",
"ukrainian": "uk",
"urdu": "ur",
"uyghur": "ug",
"uzbek": "uz",
"vietnamese": "vi",
"welsh": "cy",
"xhosa": "xh",
"yiddish": "yi",
"yoruba": "yo",
"zulu": "zu",
}
class BaseError(Exception):
"""
base error structure class
"""
def __init__(self, val, message):
"""
@param val: actual value
@param message: message shown to the user
"""
self.val = val
self.message = message
super().__init__()
def __str__(self):
return "{} --> {}".format(self.val, self.message)
class LanguageNotSupportedException(BaseError):
"""
exception thrown if the user uses a language
that is not supported by the deep_translator
"""
def __init__(
self, val, message="There is no support for the chosen language"
):
super().__init__(val, message)
class NotValidPayload(BaseError):
"""
exception thrown if the user enters an invalid payload
"""
def __init__(
self,
val,
message="text must be a valid text with maximum 5000 character,"
"otherwise it cannot be translated",
):
super(NotValidPayload, self).__init__(val, message)
class InvalidSourceOrTargetLanguage(BaseError):
"""
exception thrown if the user enters an invalid payload
"""
def __init__(self, val, message="Invalid source or target language!"):
super(InvalidSourceOrTargetLanguage, self).__init__(val, message)
class TranslationNotFound(BaseError):
"""
exception thrown if no translation was found for the text provided by the user
"""
def __init__(
self,
val,
message="No translation was found using the current translator. Try another translator?",
):
super(TranslationNotFound, self).__init__(val, message)
class ElementNotFoundInGetRequest(BaseError):
"""
exception thrown if the html element was not found in the body parsed by beautifulsoup
"""
def __init__(
self, val, message="Required element was not found in the API response"
):
super(ElementNotFoundInGetRequest, self).__init__(val, message)
class NotValidLength(BaseError):
"""
exception thrown if the provided text exceed the length limit of the translator
"""
def __init__(self, val, min_chars, max_chars):
message = f"Text length need to be between {min_chars} and {max_chars} characters"
super(NotValidLength, self).__init__(val, message)
class RequestError(Exception):
"""
exception thrown if an error occurred during the request call, e.g a connection problem.
"""
def __init__(
self,
message="Request exception can happen due to an api connection error. "
"Please check your connection and try again",
):
self.message = message
def __str__(self):
return self.message
class TooManyRequests(Exception):
"""
exception thrown if an error occurred during the request call, e.g a connection problem.
"""
def __init__(
self,
message="Server Error: You made too many requests to the server."
"According to google, you are allowed to make 5 requests per second"
"and up to 200k requests per day. You can wait and try again later or"
"you can try the translate_batch function",
):
self.message = message
def __str__(self):
return self.message
class ServerException(Exception):
"""
Default YandexTranslate exception from the official website
"""
errors = {
400: "ERR_BAD_REQUEST",
401: "ERR_KEY_INVALID",
402: "ERR_KEY_BLOCKED",
403: "ERR_DAILY_REQ_LIMIT_EXCEEDED",
404: "ERR_DAILY_CHAR_LIMIT_EXCEEDED",
413: "ERR_TEXT_TOO_LONG",
429: "ERR_TOO_MANY_REQUESTS",
422: "ERR_UNPROCESSABLE_TEXT",
500: "ERR_INTERNAL_SERVER_ERROR",
501: "ERR_LANG_NOT_SUPPORTED",
503: "ERR_SERVICE_NOT_AVAIBLE",
}
def __init__(self, status_code, *args):
message = self.errors.get(status_code, "API server error")
super(ServerException, self).__init__(message, *args)
def is_empty(text: str) -> bool:
return text == ""
def request_failed(status_code: int) -> bool:
"""Check if a request has failed or not.
A request is considered successfull if the status code is in the 2** range.
Args:
status_code (int): status code of the request
Returns:
bool: indicates request failure
"""
if status_code > 299 or status_code < 200:
return True
return False
def is_input_valid(
text: str, min_chars: int = 0, max_chars: Optional[int] = None
) -> bool:
"""
validate the target text to translate
@param min_chars: min characters
@param max_chars: max characters
@param text: text to translate
@return: bool
"""
if not isinstance(text, str):
raise NotValidPayload(text)
if max_chars and (not min_chars <= len(text) < max_chars):
raise NotValidLength(text, min_chars, max_chars)
return True
class BaseTranslator(ABC):
"""
Abstract class that serve as a base translator for other different translators
"""
def __init__(
self,
base_url: str = None,
languages: dict = language_codes,
source: str = "auto",
target: str = "en",
payload_key: Optional[str] = None,
element_tag: Optional[str] = None,
element_query: Optional[dict] = None,
**url_params,
):
"""
@param source: source language to translate from
@param target: target language to translate to
"""
self._base_url = base_url
self._languages = languages
self._supported_languages = list(self._languages.keys())
if not source:
raise InvalidSourceOrTargetLanguage(source)
if not target:
raise InvalidSourceOrTargetLanguage(target)
self._source, self._target = self._map_language_to_code(source, target)
self._url_params = url_params
self._element_tag = element_tag
self._element_query = element_query
self.payload_key = payload_key
super().__init__()
@property
def source(self):
return self._source
@source.setter
def source(self, lang):
self._source = lang
@property
def target(self):
return self._target
@target.setter
def target(self, lang):
self._target = lang
def _type(self):
return self.__class__.__name__
def _map_language_to_code(self, *languages):
"""
map language to its corresponding code (abbreviation) if the language was passed
by its full name by the user
@param languages: list of languages
@return: mapped value of the language or raise an exception if the language is
not supported
"""
for language in languages:
if language in self._languages.values() or language == "auto":
yield language
elif language in self._languages.keys():
yield self._languages[language]
else:
raise LanguageNotSupportedException(
language,
message=f"No support for the provided language.\n"
f"Please select on of the supported languages:\n"
f"{self._languages}",
)
def _same_source_target(self) -> bool:
return self._source == self._target
def get_supported_languages(
self, as_dict: bool = False, **kwargs
) -> Union[list, dict]:
"""
return the supported languages by the Google translator
@param as_dict: if True, the languages will be returned as a dictionary
mapping languages to their abbreviations
@return: list or dict
"""
return self._supported_languages if not as_dict else self._languages
def is_language_supported(self, language: str, **kwargs) -> bool:
"""
check if the language is supported by the translator
@param language: a string for 1 language
@return: bool or raise an Exception
"""
if (
language == "auto"
or language in self._languages.keys()
or language in self._languages.values()
):
return True
else:
return False
@abstractmethod
def translate(self, text: str, **kwargs) -> str:
"""
translate a text using a translator under the hood and return
the translated text
@param text: text to translate
@param kwargs: additional arguments
@return: str
"""
return NotImplemented("You need to implement the translate method!")
def _read_docx(self, f: str):
import docx2txt
return docx2txt.process(f)
def _read_pdf(self, f: str):
import pypdf
reader = pypdf.PdfReader(f)
page = reader.pages[0]
return page.extract_text()
def _translate_file(self, path: str, **kwargs) -> str:
"""
translate directly from file
@param path: path to the target file
@type path: str
@param kwargs: additional args
@return: str
"""
if not isinstance(path, Path):
path = Path(path)
if not path.exists():
print("Path to the file is wrong!")
exit(1)
ext = path.suffix
if ext == ".docx":
text = self._read_docx(f=str(path))
elif ext == ".pdf":
text = self._read_pdf(f=str(path))
else:
with open(path, "r", encoding="utf-8") as f:
text = f.read().strip()
return self.translate(text)
def _translate_batch(self, batch: List[str], **kwargs) -> List[str]:
"""
translate a list of texts
@param batch: list of texts you want to translate
@return: list of translations
"""
if not batch:
raise Exception("Enter your text list that you want to translate")
arr = []
for i, text in enumerate(batch):
translated = self.translate(text, **kwargs)
arr.append(translated)
return arr
class GoogleTranslator(BaseTranslator):
"""
class that wraps functions, which use Google Translate under the hood to translate text(s)
"""
def __init__(
self,
source: str = "auto",
target: str = "en",
proxies: Optional[dict] = None,
**kwargs
):
"""
@param source: source language to translate from
@param target: target language to translate to
"""
self.proxies = proxies
super().__init__(
base_url=google_translate_endpoint,
source=source,
target=target,
element_tag="div",
element_query={"class": "t0"},
payload_key="q", # key of text in the url
**kwargs
)
self._alt_element_query = {"class": "result-container"}
def translate(self, text: str, **kwargs) -> str:
"""
function to translate a text
@param text: desired text to translate
@return: str: translated text
"""
if is_input_valid(text, max_chars=1000):
text = text.strip()
if self._same_source_target() or is_empty(text):
return text
self._url_params["tl"] = self._target
self._url_params["sl"] = self._source
if self.payload_key:
self._url_params[self.payload_key] = text
response = requests.get(
self._base_url, params=self._url_params, proxies=self.proxies
)
if response.status_code == 429:
raise TooManyRequests()
if request_failed(status_code=response.status_code):
raise RequestError()
soup = BeautifulSoup(response.text, "html.parser")
element = soup.find(self._element_tag, self._element_query)
response.close()
if not element:
element = soup.find(self._element_tag, self._alt_element_query)
if not element:
raise TranslationNotFound(text)
if element.get_text(strip=True) == text.strip():
to_translate_alpha = "".join(
ch for ch in text.strip() if ch.isalnum()
)
translated_alpha = "".join(
ch for ch in element.get_text(strip=True) if ch.isalnum()
)
if (
to_translate_alpha
and translated_alpha
and to_translate_alpha == translated_alpha
):
self._url_params["tl"] = self._target
if "hl" not in self._url_params:
return text.strip()
del self._url_params["hl"]
return self.translate(text)
else:
return element.get_text(strip=True)
def translate_file(self, path: str, **kwargs) -> str:
"""
translate directly from file
@param path: path to the target file
@type path: str
@param kwargs: additional args
@return: str
"""
return self._translate_file(path, **kwargs)
def translate_batch(self, batch: List[str], **kwargs) -> List[str]:
"""
translate a list of texts
@param batch: list of texts you want to translate
@return: list of translations
"""
return self._translate_batch(batch, **kwargs)
def translate(txt,to_lang="en",from_lang="auto"):
log(f'CALL translate')
translator = GoogleTranslator(from_lang=from_lang,to_lang=to_lang)
translation = ""
if len(txt) > 1000:
words = txt.split()
while len(words) > 0:
chunk = ""
while len(words) > 0 and len(chunk) < 1000:
chunk = chunk + " " + words[0]
words = words[1:]
if len(chunk) > 1000:
_words = chunk.split()
words = [_words[-1], *words]
chunk = " ".join(_words[:-1])
translation = translation + " " + translator.translate(chunk)
else:
translation = translator.translate(txt)
translation = translation.strip()
log(f'RET translate with translation as {translation}')
return translation
@spaces.GPU(duration=120)
def handle_generation(artist,song,genre,lyrics):
log(f'CALL handle_generate')
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).upper().strip()
pos_song = re.sub("([ \t\n]){1,}", " ", song).lower().strip()
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip()
pos_genre = ' '.join(word[0].upper() + word[1:] for word in pos_genre.split())
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
pos_lyrics_sum = pos_lyrics if pos_lyrics == "" else summarize(translate(pos_lyrics))
neg = f"Sexuality, Humanity, Textual, Labeled, Distorted, Discontinuous, Blurry, Doll-Like, Overly Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects."
q = "\""
pos = f'HQ Hyper-realistic { translate(pos_genre) } song "{ translate(pos_song) }"{ pos_lyrics_sum if pos_lyrics_sum == "" else ": " + pos_lyrics_sum }.'
print(f"""
Positive: {pos}
Negative: {neg}
""")
imgs = all_pipes(pos,neg,pos_artist,pos_song)
index = 1
names = []
for img in imgs:
scaled_by = 2
labeled_img = add_song_cover_text(img,artist,song,height*scaled_by,width*scaled_by)
name = f'{artist} - {song} ({index}).png'
labeled_img.save(name)
names.append(name)
index = index + 1
# return names
return names[0]
# entry
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Citrus(),css=css) as demo:
gr.Markdown(f"""
# Song Cover Image Generator
""")
with gr.Row():
with gr.Column(scale=4):
artist = gr.Textbox(
placeholder="Artist name",
value="",
container=False,
max_lines=1
)
song = gr.Textbox(
placeholder="Song name",
value="",
container=False,
max_lines=1
)
genre = gr.Textbox(
placeholder="Genre",
value="",
container=False,
max_lines=1
)
lyrics = gr.Textbox(
placeholder="Lyrics",
value="",
container=False,
max_lines=1
)
with gr.Column():
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
run = gr.Button("Generate",elem_classes="btn")
run.click(
fn=handle_generation,
inputs=[artist,song,genre,lyrics],
outputs=[cover]
)
demo.queue().launch()
|