Spaces:
Sleeping
Sleeping
File size: 4,213 Bytes
a8cf54a fa2d678 a8cf54a fa2d678 47ce9d9 4791078 a8cf54a aa69d1f a8cf54a 47ce9d9 a8cf54a 47ce9d9 a8cf54a e807675 a8cf54a 4791078 e807675 47ce9d9 e807675 a8cf54a e807675 a8cf54a 47ce9d9 a8cf54a 47ce9d9 e807675 a8cf54a 47ce9d9 e807675 a8cf54a e807675 a8cf54a e807675 a8cf54a e807675 a8cf54a e807675 a8cf54a e807675 4791078 fa2d678 a8cf54a 4791078 fa2d678 a8cf54a e807675 a8cf54a e807675 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
import requests
import json
import io
import os
from PIL import Image
import base64
from prance import ResolvingParser
SCHEMA_URL = "http://localhost:5000/openapi.json"
FILENAME = "openapi.json"
schema_response = requests.get(SCHEMA_URL)
openapi_spec = schema_response
r = requests.get(SCHEMA_URL)
print(r.content)
with open(FILENAME, "wb") as f:
f.write(r.content)
parser = ResolvingParser(FILENAME)
api_spec = parser.specification
print(parser.specification)
def extract_property_info(prop):
combined_prop = {}
merge_keywords = ["allOf", "anyOf", "oneOf"]
for keyword in merge_keywords:
if keyword in prop:
for subprop in prop[keyword]:
combined_prop.update(subprop)
del prop[keyword]
if not combined_prop:
combined_prop = prop.copy()
for key in ['description', 'default']:
if key in prop:
combined_prop[key] = prop[key]
return combined_prop
def sort_properties_by_order(properties):
ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
return ordered_properties
def create_gradio_app(api_spec, api_url):
inputs = []
outputs = []
input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
output_schema = api_spec["components"]["schemas"]["Output"]
ordered_input_schema = sort_properties_by_order(input_schema)
names = []
for name, prop in ordered_input_schema:
prop = extract_property_info(prop)
if "enum" in prop:
input_field = gr.Dropdown(
choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
)
elif prop["type"] == "integer":
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
)
elif prop["type"] == "number":
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"),
)
elif prop["type"] == "boolean":
input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
elif prop["type"] == "string" and prop.get("format") == "uri":
input_field = gr.File(label=prop.get("title"))
else:
input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
inputs.append(input_field)
names.append(name)
print(names)
data_field = gr.State(value=names)
inputs.append(data_field)
if output_schema["type"] == "string":
output_component = gr.Gallery(label="Output Image")
outputs.append(output_component)
outputs.append(data_field)
#else if there's multiple outputs
def predict(*args):
print(args)
keys = args[-1]
payload = {"input": {}}
for i, key in enumerate(keys):
value = args[i]
if(os.path.exists(value)):
value = "http://localhost:7860/file=" + value
payload["input"][key] = value
print(payload)
response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
json_response = response.json()
if "status" in json_response and json_response["status"] == "failed":
raise gr.Error("Failed to generate image")
output_images = []
for output_uri in json_response["output"]:
base64_image = output_uri.replace("data:image/png;base64,", "")
image_data = base64.b64decode(base64_image)
image_stream = io.BytesIO(image_data)
output_images.append(Image.open(image_stream))
return output_images
return gr.Interface(fn=predict, inputs=inputs, outputs=outputs if outputs else "label")
API_URL = "http://localhost:5000/predictions"
app = create_gradio_app(api_spec, API_URL)
app.launch(share=True) |