File size: 4,213 Bytes
a8cf54a
fa2d678
a8cf54a
fa2d678
47ce9d9
4791078
a8cf54a
 
 
aa69d1f
a8cf54a
 
 
 
 
 
 
 
 
 
47ce9d9
a8cf54a
 
 
47ce9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cf54a
e807675
 
 
 
a8cf54a
4791078
e807675
47ce9d9
e807675
 
 
 
a8cf54a
e807675
a8cf54a
 
47ce9d9
a8cf54a
 
47ce9d9
e807675
 
a8cf54a
 
47ce9d9
e807675
 
a8cf54a
 
e807675
a8cf54a
e807675
 
 
a8cf54a
e807675
 
 
 
 
 
 
 
 
 
 
 
 
a8cf54a
e807675
 
 
 
a8cf54a
e807675
 
4791078
fa2d678
a8cf54a
4791078
fa2d678
a8cf54a
 
 
 
 
 
 
 
 
e807675
a8cf54a
 
 
 
e807675
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import requests
import json
import io
import os
from PIL import Image
import base64
from prance import ResolvingParser

SCHEMA_URL = "http://localhost:5000/openapi.json"
FILENAME = "openapi.json"
schema_response = requests.get(SCHEMA_URL)
openapi_spec = schema_response

r = requests.get(SCHEMA_URL)
print(r.content)
with open(FILENAME, "wb") as f:
    f.write(r.content)

parser = ResolvingParser(FILENAME)
api_spec = parser.specification
print(parser.specification)

def extract_property_info(prop):
    combined_prop = {}
    merge_keywords = ["allOf", "anyOf", "oneOf"]
    
    for keyword in merge_keywords:
        if keyword in prop:
            for subprop in prop[keyword]:
                combined_prop.update(subprop)
            del prop[keyword]
    
    if not combined_prop:
        combined_prop = prop.copy()
    
    for key in ['description', 'default']:
        if key in prop:
            combined_prop[key] = prop[key]
    
    return combined_prop

def sort_properties_by_order(properties):
    ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
    return ordered_properties

def create_gradio_app(api_spec, api_url):
    inputs = []
    outputs = []
    input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
    output_schema = api_spec["components"]["schemas"]["Output"]
    ordered_input_schema = sort_properties_by_order(input_schema)
    names = []
    for name, prop in ordered_input_schema:

        prop = extract_property_info(prop)
        if "enum" in prop:
            input_field = gr.Dropdown(
                choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
            )
        elif prop["type"] == "integer":
            input_field = gr.Slider(
                label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
                minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
            )
        elif prop["type"] == "number":
            input_field = gr.Slider(
                label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
                minimum=prop.get("minimum"), maximum=prop.get("maximum"),
            )
        elif prop["type"] == "boolean":
            input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
        elif prop["type"] == "string" and prop.get("format") == "uri":
            input_field = gr.File(label=prop.get("title"))
        else:
            input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
        inputs.append(input_field)
        names.append(name)
    print(names)
    data_field = gr.State(value=names)
    inputs.append(data_field)
    if output_schema["type"] == "string":
        output_component = gr.Gallery(label="Output Image")
        outputs.append(output_component)
        outputs.append(data_field)
    #else if there's multiple outputs
    
    def predict(*args):
        print(args)
        keys = args[-1]
        payload = {"input": {}}
        for i, key in enumerate(keys):
            value = args[i]
            if(os.path.exists(value)):
                value = "http://localhost:7860/file=" + value
            payload["input"][key] = value
        print(payload)
        response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
        json_response = response.json()

        if "status" in json_response and json_response["status"] == "failed":
            raise gr.Error("Failed to generate image")

        output_images = []
        for output_uri in json_response["output"]:
            base64_image = output_uri.replace("data:image/png;base64,", "")
            image_data = base64.b64decode(base64_image)
            image_stream = io.BytesIO(image_data)
            output_images.append(Image.open(image_stream))

        return output_images

    return gr.Interface(fn=predict, inputs=inputs, outputs=outputs if outputs else "label")


API_URL = "http://localhost:5000/predictions"
app = create_gradio_app(api_spec, API_URL)
app.launch(share=True)