File size: 6,939 Bytes
a8cf54a
fa2d678
a8cf54a
fa2d678
47ce9d9
38a61be
4791078
a8cf54a
 
 
aa69d1f
a8cf54a
 
 
 
 
 
 
 
 
 
47ce9d9
a8cf54a
 
 
47ce9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cf54a
e807675
 
 
2792f6f
 
 
 
 
 
 
 
 
3b5f427
2792f6f
 
 
 
 
 
 
 
 
 
 
3b5f427
2792f6f
 
 
 
e807675
a8cf54a
4791078
e807675
47ce9d9
e807675
 
 
 
a8cf54a
e807675
a8cf54a
 
47ce9d9
a8cf54a
 
9c90996
 
 
 
 
 
 
a8cf54a
9c90996
 
 
 
 
 
 
a8cf54a
e807675
a8cf54a
e807675
 
 
a8cf54a
e807675
 
 
 
05d512f
38a61be
 
 
05d512f
e807675
 
 
 
 
a8cf54a
e807675
 
f646a03
e807675
a8cf54a
e807675
 
05d512f
 
 
 
 
38a61be
0cd0e7d
 
beb5432
8b4c358
2792f6f
ac3f048
 
2792f6f
38a61be
0cd0e7d
38a61be
 
 
 
2792f6f
0cd0e7d
38a61be
 
 
 
 
 
2792f6f
 
3d0b330
05d512f
 
38a61be
a8cf54a
 
 
e807675
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import requests
import json
import io
import os
import uuid
from PIL import Image
import base64
from prance import ResolvingParser

SCHEMA_URL = "http://localhost:5000/openapi.json"
FILENAME = "openapi.json"
schema_response = requests.get(SCHEMA_URL)
openapi_spec = schema_response

r = requests.get(SCHEMA_URL)
print(r.content)
with open(FILENAME, "wb") as f:
    f.write(r.content)

parser = ResolvingParser(FILENAME)
api_spec = parser.specification
print(parser.specification)

def extract_property_info(prop):
    combined_prop = {}
    merge_keywords = ["allOf", "anyOf", "oneOf"]
    
    for keyword in merge_keywords:
        if keyword in prop:
            for subprop in prop[keyword]:
                combined_prop.update(subprop)
            del prop[keyword]
    
    if not combined_prop:
        combined_prop = prop.copy()
    
    for key in ['description', 'default']:
        if key in prop:
            combined_prop[key] = prop[key]
    
    return combined_prop

def sort_properties_by_order(properties):
    ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
    return ordered_properties
    

def parse_outputs(data):
    values = []

    if isinstance(data, dict):
        # Handle case where data is an object
        dict_values = []
        for value in data.values():
            extracted_values = parse_outputs(value)
            # For dict, we append instead of extend to maintain list structure within objects
            if isinstance(value, list):
                dict_values += [extracted_values]
            else:
                dict_values += extracted_values
        return dict_values
    elif isinstance(data, list):
        # Handle case where data is an array
        list_values = []
        for item in data:
            # Here we extend to flatten the list since we're already in an array context
            list_values += parse_outputs(item)
        return list_values
    else:
        # Handle primitive data types directly
        return [data]

def create_gradio_app(api_spec, api_url):
    inputs = []
    outputs = []
    input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
    output_schema = api_spec["components"]["schemas"]["Output"]
    ordered_input_schema = sort_properties_by_order(input_schema)
    names = []
    for name, prop in ordered_input_schema:

        prop = extract_property_info(prop)
        if "enum" in prop:
            input_field = gr.Dropdown(
                choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
            )
        elif prop["type"] == "integer":
            if prop.get("minimum") and prop.get("maximum"):
                input_field = gr.Slider(
                    label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
                    minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
                )
            else:
                input_field = gr.Number(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
        elif prop["type"] == "number":
            if prop.get("minimum") and prop.get("maximum"):
                input_field = gr.Slider(
                    label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
                    minimum=prop.get("minimum"), maximum=prop.get("maximum"),
                )
            else:
                input_field = gr.Number(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
        elif prop["type"] == "boolean":
            input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
        elif prop["type"] == "string" and prop.get("format") == "uri":
            input_field = gr.File(label=prop.get("title"))
        else:
            input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
        inputs.append(input_field)
        names.append(name)
    print(names)
    data_field = gr.State(value=names)
    inputs.append(data_field)
    print(output_schema)
    outputs.append(gr.Image(label=output_schema["title"], visible=True))
    outputs.append(gr.Audio(label=output_schema["title"], visible=False))
    outputs.append(gr.Textbox(label=output_schema["title"], visible=False))
    outputs.append(data_field)
    #else if there's multiple outputs
    
    def predict(*args):
        print(args)
        keys = args[-1]
        payload = {"input": {}}
        for i, key in enumerate(keys):
            value = args[i]
            if value and (os.path.exists(str(value))):
                value = "http://localhost:7860/file=" + value
            payload["input"][key] = value
        print(payload)
        response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
        print(response)
        if response.status_code == 200:
            json_response = response.json()
            print(json_response)
            if "status" in json_response and json_response["status"] == "failed":
                raise gr.Error("Failed to generate output")

            print(json_response["output"])
            outputs = parse_outputs(json_response["output"])
            print(outputs)
            for output in outputs:
                if not output:
                    continue
                if output.startswith("data:image"):
                    # Process as image
                    base64_data = output.split(",", 1)[1]
                    image_data = base64.b64decode(base64_data)
                    image_stream = io.BytesIO(image_data)
                    image = Image.open(image_stream)
                    return gr.update(visible=True, value=image), gr.update(visible=False), gr.update(visible=False), keys
                elif output.startswith("data:audio"):
                    base64_data = output.split(",", 1)[1]
                    audio_data = base64.b64decode(base64_data)
                    audio_stream = io.BytesIO(audio_data)
                    # Here you can save the audio or return the stream for further processing
                    filename = f"{uuid.uuid4()}.wav"  # Change format as needed
                    with open(filename, "wb") as audio_file:
                        audio_file.write(audio_stream.getbuffer())
                    return gr.update(visible=False), gr.update(visible=True, value=filename), gr.update(visible=False), keys  
                else:
                    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True, value=output), keys
        else:
            raise gr.Error("The submission failed!")
    return gr.Interface(fn=predict, inputs=inputs, outputs=outputs)

API_URL = "http://localhost:5000/predictions"
app = create_gradio_app(api_spec, API_URL)
app.launch(share=True)