nano-banana / app.py
multimodalart's picture
Update app.py
0b8abda verified
raw
history blame
6.71 kB
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami
# It is recommended to create this as a Secret on your Hugging Face Space
# For example: FAL_KEY = "fal_key_..."
FAL_KEY = os.getenv("FAL_KEY", "")
# Set the key for the fal_client
if FAL_KEY:
fal_client.api_key = FAL_KEY
def get_fal_key():
"""Checks for the FAL_KEY and raises a Gradio error if it's not set."""
if not FAL_KEY:
raise gr.Error("FAL_KEY is not set. Please add it to your Hugging Face Space secrets.")
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user using their token."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return user_info.get("isPro", False)
except Exception as e:
print(f"Could not verify user's PRO status: {e}")
return False
# --- Backend Generation Functions ---
def run_single_image_logic(prompt: str, image: Optional[str] = None) -> List[str]:
"""Handles text-to-image or single image-to-image and returns a list."""
get_fal_key()
if image:
image_url = fal_client.upload_file(image)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
else:
result = fal_client.run(
"fal-ai/nano-banana", arguments={"prompt": prompt}
)
return [result["images"][0]["url"]]
def run_multi_image_logic(prompt: str, images: List[str]) -> List[str]:
"""Handles multi-image editing."""
get_fal_key()
if not images:
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
output_images = []
for image_path in images:
image_url = fal_client.upload_file(image_path)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
output_images.append(result["images"][0]["url"])
return output_images
# --- Gradio App UI ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Nano Banana for PROs")
gr.Markdown("Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. [Subscribe to PRO](https://huggingface.co/pro)")
login_button = gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.Markdown("## Welcome, PRO User!")
with gr.Row():
# LEFT COLUMN: Inputs
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="A delicious looking pizza"
)
active_tab_state = gr.State(value="single")
with gr.Tabs() as tabs:
with gr.TabItem("Single Image", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="Input Image (Optional for text-to-image)"
)
with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="Input Images", file_types=["image"]
)
generate_button = gr.Button("Generate", variant="primary")
# RIGHT COLUMN: Outputs
with gr.Column(scale=1):
output_gallery = gr.Gallery(label="Output")
selected_output_image_state = gr.State()
use_image_button = gr.Button("♻️ Use Generated Image for Next Edit")
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
) -> List[str]:
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
if active_tab == "multiple" and multi_images:
return run_multi_image_logic(prompt, multi_images)
else:
return run_single_image_logic(prompt, single_image)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state, login_button],
outputs=[output_gallery],
)
# New handlers for the continuous editing loop
def store_selected_image(evt: gr.SelectData):
"""When an image is selected in the output gallery, store its path in state."""
return evt.value['image']
def reuse_output_image(selected_image_path):
"""
Takes the path from state and sends it to the single image input.
Also forces the UI to switch to the "Single Image" tab.
"""
if not selected_image_path:
gr.Warning("Please select an image from the output gallery first!")
return None, gr.update()
# Output 1: The image path for the gr.Image component
# Output 2: The ID of the tab to select for the gr.Tabs component
return selected_image_path, "single"
output_gallery.select(store_selected_image, None, selected_output_image_state)
use_image_button.click(
reuse_output_image,
inputs=[selected_output_image_state],
outputs=[image_input, tabs]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other benefits, please consider upgrading your account.\n\n"
"### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.launch()