File size: 6,673 Bytes
d076b8a
 
 
 
 
 
 
 
 
 
 
00093e0
d076b8a
 
af19cb5
d076b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f36caa0
 
 
 
d076b8a
 
f36caa0
d076b8a
 
f36caa0
d076b8a
f36caa0
d076b8a
f36caa0
d076b8a
 
f36caa0
d076b8a
f36caa0
d076b8a
 
 
 
 
 
 
 
f36caa0
 
6deab9e
d076b8a
 
 
 
 
 
 
f36caa0
d076b8a
 
f36caa0
 
d076b8a
 
 
 
f36caa0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import torchaudio
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import torchaudio.transforms as T
from torch import nn, optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
import numpy as np

# Set device to 'cpu' or 'cuda' if available
device = torch.device('cpu')

# Parameters
sample_rate = 44100  # 44.1kHz stereo sounds
n_fft = 4096  # FFT size
hop_length = 2048  # Hop length for STFT
duration = 5  # Duration of the sound files (5 seconds)
n_channels = 2  # Stereo sound
output_time_frames = duration * sample_rate // hop_length  # Number of time frames in the spectrogram

stft_transform = T.Spectrogram(n_fft=n_fft, hop_length=hop_length, win_length=n_fft)

image_transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])  # Normalize to [-1, 1]
])

# Image Encoder (for the Generator)
class ImageEncoder(nn.Module):
    def __init__(self):
        super(ImageEncoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.fc = nn.Linear(512 * 16 * 16, 512)

    def forward(self, x):
        x = self.encoder(x)
        x = x.view(x.size(0), -1)
        return self.fc(x)


# Sound Decoder (for the Generator)
class SoundDecoder(nn.Module):
    def __init__(self, output_time_frames):
        super(SoundDecoder, self).__init__()
        self.fc = nn.Linear(512, 512 * 8 * 8)

        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.ConvTranspose2d(64, n_channels, kernel_size=4, stride=2, padding=1),
        )

        # Modify the upsample to exactly match the real spectrogram size (108 time frames)
        self.upsample = nn.Upsample(size=(n_fft // 2 + 1, 108), mode='bilinear', align_corners=True)

    def forward(self, x):
        x = self.fc(x)
        x = x.view(x.size(0), 512, 8, 8)
        x = self.decoder(x)
        x = self.upsample(x)
        # Debugging shape
        print(f'Generated spectrogram shape: {x.shape}')
        return x

# Generator model
class Generator(nn.Module):
    def __init__(self, output_time_frames):
        super(Generator, self).__init__()
        self.encoder = ImageEncoder()
        self.decoder = SoundDecoder(output_time_frames)

    def forward(self, img):
        # Debugging: Image encoder
        encoded_features = self.encoder(img)
        print(f"Encoded features shape (from Image Encoder): {encoded_features.shape}")

        # Debugging: Sound decoder
        generated_spectrogram = self.decoder(encoded_features)
        print(f"Generated spectrogram shape (from Sound Decoder): {generated_spectrogram.shape}")

        return generated_spectrogram


# Function to generate and save audio from a test image using the pre-trained GAN model
def test_model(generator, test_img_path, output_audio_path, device):
    # Load and preprocess test image
    test_img = Image.open(test_img_path).convert('RGB')
    test_img = image_transform(test_img).unsqueeze(0).to(device)  # Add batch dimension

    # Generate sound spectrogram from the image
    with torch.no_grad():  # Disable gradient calculation for inference
        generated_spectrogram = generator(test_img)

    # Debugging: Check generated spectrogram shape
    print(f"Generated spectrogram shape: {generated_spectrogram.shape}")

    # Convert the generated spectrogram to audio
    generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu())  # Remove batch dimension

# Load the pre-trained GAN model
def load_gan_model(generator, model_path, device):
    generator.load_state_dict(torch.load(model_path, map_location=device))
    generator.eval()  # Set the model to evaluation mode
    return generator


# Generator model class definitions remain the same as in your original code.

# Convert magnitude-only spectrogram to complex format by assuming zero phase
def magnitude_to_complex_spectrogram(magnitude_spectrogram):
    zero_phase = torch.zeros_like(magnitude_spectrogram)
    complex_spectrogram = torch.stack([magnitude_spectrogram, zero_phase], dim=-1)
    return complex_spectrogram

# Convert spectrogram back to audio using inverse STFT
def spectrogram_to_audio(magnitude_spectrogram):
    magnitude_spectrogram = torch.expm1(magnitude_spectrogram)
    complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram)
    audio = torch.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length)
    return audio

# Function to generate audio from an uploaded image
def generate_audio_from_image(image):
    test_img = image_transform(image).unsqueeze(0).to(device)  # Preprocess image

    # Generate sound spectrogram from the image using the loaded generator
    with torch.no_grad():
        generated_spectrogram = generator(test_img)

    # Convert the generated spectrogram to audio
    generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu())

    # Convert audio tensor to numpy and return it for Gradio to handle
    return (sample_rate, generated_audio.numpy())

# Gradio Interface
def main():
    global generator  # Declare the generator object globally
    # Instantiate your Generator model
    generator = Generator(output_time_frames).to(device)

    # Load the pre-trained model
    model_path = '/path/to/your/model/gan_model_100e_16b.pth'  # Change this path
    generator = load_gan_model(generator, model_path, device)

    # Gradio interface: allow users to upload an image and generate audio
    iface = gr.Interface(fn=generate_audio_from_image, inputs=gr.Image(type="pil"), outputs=gr.Audio(type="numpy", label="Generated Audio"))
    iface.launch()

if __name__ == "__main__":
    main()