tarinmodel3 / app.py
nagasurendra's picture
Update app.py
db24399 verified
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
import zipfile
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time
# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Set up logging
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
ORIGINAL_FRAMES_DIR = "original_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(ORIGINAL_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(ORIGINAL_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1
# Load model
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
model.half()
print(f"Using {device}, model classes: {model.names}")
# Helper functions
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
map_path = "map_temp.png"
plt.figure(figsize=(4, 4))
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
plt.title("Issue Locations Map")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.savefig(map_path)
plt.close()
return map_path
def send_to_salesforce(data: Dict[str, Any]) -> None:
pass # Placeholder
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
counts = Counter([det["label"] for det in detections])
return {
"items": [{"type": k, "count": v} for k, v in counts.items()],
"total_detections": len(detections),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
def generate_line_chart() -> Optional[str]:
if not detected_counts:
return None
chart_path = "chart_temp.png"
plt.figure(figsize=(4, 2))
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
plt.title("Detections Over Time")
plt.xlabel("Frame")
plt.ylabel("Count")
plt.grid(True)
plt.tight_layout()
plt.savefig(chart_path)
plt.close()
return chart_path
def create_zip_from_directory(dir_path: str, zip_filename: str) -> str:
zip_path = os.path.join(OUTPUT_DIR, zip_filename)
with zipfile.ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(dir_path):
for file in files:
full_path = os.path.join(root, file)
zipf.write(full_path, arcname=file)
return zip_path
# Main function
def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
frame_count = 0
detected_counts.clear()
detected_issues.clear()
gps_coordinates.clear()
log_entries.clear()
last_metrics = {}
for dir_ in [CAPTURED_FRAMES_DIR, ORIGINAL_FRAMES_DIR]:
for file in os.listdir(dir_):
os.remove(os.path.join(dir_, file))
if video is None:
log_entries.append("Error: No video uploaded")
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None
cap = cv2.VideoCapture(video)
if not cap.isOpened():
log_entries.append("Error: Could not open video file")
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
output_path = "processed_output.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (resize_width, resize_height))
all_detections = []
frame_times = []
detection_frame_count = 0
start_time = time.time()
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % frame_skip != 0:
continue
frame = cv2.resize(frame, (resize_width, resize_height))
results = model(frame, verbose=False, conf=0.5, iou=0.7)
annotated_frame = results[0].plot()
# Save original frame
original_path = os.path.join(ORIGINAL_FRAMES_DIR, f"frame_{frame_count}.jpg")
cv2.imwrite(original_path, frame)
frame_detections = []
for detection in results[0].boxes:
cls = int(detection.cls)
conf = float(detection.conf)
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
label = model.names[cls]
frame_detections.append({"label": label, "box": box, "conf": conf})
if frame_detections:
detection_frame_count += 1
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
captured_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg")
cv2.imwrite(captured_path, annotated_frame)
detected_issues.append(captured_path)
if len(detected_issues) > 100:
detected_issues.pop(0)
out.write(annotated_frame)
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
gps_coordinates.append(gps_coord)
for det in frame_detections:
det["gps"] = gps_coord
all_detections.extend(frame_detections)
detected_counts.append(len(frame_detections))
frame_time = (time.time() - start_time) * 1000
frame_times.append(frame_time)
last_metrics = update_metrics(all_detections)
send_to_salesforce({
"detections": all_detections,
"metrics": last_metrics,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"frame_count": frame_count,
"gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
})
cap.release()
out.release()
chart_path = generate_line_chart()
map_path = generate_map(gps_coordinates[-5:], all_detections)
originals_zip = create_zip_from_directory(ORIGINAL_FRAMES_DIR, "original_images.zip")
annotated_zip = create_zip_from_directory(CAPTURED_FRAMES_DIR, "annotated_images.zip")
return (
output_path,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_issues,
chart_path,
map_path,
originals_zip,
annotated_zip
)
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
gr.Markdown("# Crack and Pothole Detection Dashboard")
with gr.Row():
with gr.Column(scale=3):
video_input = gr.Video(label="Upload Video")
width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
with gr.Row():
video_output = gr.Video(label="Processed Video")
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
with gr.Row():
chart_output = gr.Image(label="Detection Trend")
map_output = gr.Image(label="Issue Locations Map")
with gr.Row():
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
with gr.Row():
originals_zip_out = gr.File(label="Download Original Images (ZIP)")
annotated_zip_out = gr.File(label="Download Annotated Images (ZIP)")
process_btn.click(
process_video,
inputs=[video_input, width_slider, height_slider, skip_slider],
outputs=[
video_output,
metrics_output,
logs_output,
issue_gallery,
chart_output,
map_output,
originals_zip_out,
annotated_zip_out
]
)
if __name__ == "__main__":
iface.launch()