Spaces:
Sleeping
Sleeping
File size: 16,480 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f a03e926 697d647 772d3fb a066788 772d3fb 1f5cba5 5f605c3 1f5cba5 6c99cc0 1f5cba5 e2bc6df 9fb6d05 1f5cba5 e80aab9 3db6293 e80aab9 65abbbc a979fc9 a03e926 eea769a 697d647 b1271ea a03e926 1bc8bac 833b3b5 0e29657 1bc8bac 0e29657 1bc8bac cd98238 1bc8bac cd98238 1bc8bac cd98238 1bc8bac cd98238 1bc8bac 0e29657 65abbbc 0e29657 1bc8bac 0e29657 1bc8bac 0e29657 1bc8bac 0e29657 cd98238 0e29657 65abbbc 1bc8bac 0e29657 1bc8bac 0e29657 1bc8bac 0e29657 1bc8bac 0e29657 1bc8bac 0e29657 1bc8bac 65abbbc 0e29657 1bc8bac 0e29657 65abbbc 0e29657 65abbbc 0e29657 65abbbc 0e29657 65abbbc 0e29657 65abbbc 0e29657 65abbbc 9a37625 0e29657 9a37625 65abbbc 0e29657 65abbbc 0e29657 65abbbc 0e29657 99b84e4 d849921 c7a6db7 65abbbc 4288fbd 65abbbc 4288fbd 833b3b5 4288fbd 0e29657 0da2bb5 4288fbd 31243f4 c7a6db7 4021bf3 1f5cba5 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 77f790c 3c4371f 7d65c66 3c4371f 7d65c66 3a178ff 3f7f23e 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode, create_react_agent
# from typing import Any, Dict
# from typing import TypedDict, Annotated
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, AIMessage, SystemMessage
# Create a ToolNode that knows about your web_search function
import json
from state import AgentState
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
from tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools
tool_node = ToolNode([ocr_image_tool, parse_excel_tool, web_search_tool])
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
agent = create_react_agent(model=llm, tools=tool_node)
# ─── Revised plan_node with NO extra arguments ───
def plan_node(state: AgentState) -> AgentState:
"""
Assumes that `state["messages"]` already ends with a HumanMessage of the user’s question.
We look at that last HumanMessage, append it to our new history, and ask the LLM
to set exactly one key in a Python dict: web_search_query, ocr_path,
excel_path (+ excel_sheet_name), or final_answer.
"""
# 1) Grab all prior BaseMessage objects (SystemMessage/HumanMessage/AIMessage) from state
prior_msgs = state.get("messages", [])
# 2) Find the very last HumanMessage (the user_input). We assume the last message is one.
# If there is no HumanMessage, we treat user_input as empty.
user_input = ""
for msg in reversed(prior_msgs):
if isinstance(msg, HumanMessage):
user_input = msg.content
break
# 3) Build our new chat history by re‐using prior_msgs. It already includes that HumanMessage.
new_history = prior_msgs.copy()
# 4) Add a SystemMessage that instructs the LLM how to choose exactly one key
explanation = SystemMessage(
content=(
"You can set exactly one of the following keys in a Python dict, and nothing else:\n"
" • web_search_query: <search terms> \n"
" • ocr_path: <path to an image file> \n"
" • excel_path: <path to a .xlsx file> \n"
" • excel_sheet_name: <sheet name> \n"
"Or, if no tool is needed, set final_answer: <your answer>.\n"
"Example: {'web_search_query':'Mercedes Sosa discography'}\n"
"Respond with only that Python dict literal—no extra text or explanation."
)
)
# 5) Compose the prompt as a list of BaseMessage, then call the LLM
prompt_messages = new_history + [explanation]
llm_response = llm(prompt_messages)
llm_out = llm_response.content.strip()
# 6) Parse the LLM’s output as a dict
try:
parsed = eval(llm_out, {}, {})
if isinstance(parsed, dict):
partial: AgentState = {"messages": new_history}
allowed = {
"web_search_query",
"ocr_path",
"excel_path",
"excel_sheet_name",
"final_answer"
}
for k, v in parsed.items():
if k in allowed:
partial[k] = v
return partial
except Exception:
pass
# 7) Fallback if parsing failed
return {
"messages": new_history,
"final_answer": "Sorry, I could not parse your intent."
}
# ─── Revised finalize_node with NO extra arguments ───
def finalize_node(state: AgentState) -> AgentState:
"""
Assumes that `state['messages']` is a list of BaseMessage, possibly ending in an AIMessage
(or plan_node may have set final_answer directly). We append any tool results
as SystemMessages, then prompt the LLM for one final answer.
"""
# 1) Copy the existing BaseMessage list
history = state.get("messages", []).copy()
# 2) If any tool-result fields exist, append them as SystemMessages
if "web_search_result" in state and state["web_search_result"] is not None:
history.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {state['web_search_result']}"))
if "ocr_result" in state and state["ocr_result"] is not None:
history.append(SystemMessage(content=f"OCR_RESULT: {state['ocr_result']}"))
if "excel_result" in state and state["excel_result"] is not None:
history.append(SystemMessage(content=f"EXCEL_RESULT: {state['excel_result']}"))
# 3) If plan_node already set final_answer, just return it:
if state.get("final_answer") is not None:
return {"final_answer": state["final_answer"]}
# 4) Otherwise, ask the LLM to give the final answer now
history.append(SystemMessage(content="Please provide the final answer now."))
llm_response = llm(history)
return {"final_answer": llm_response.content.strip()}
tool_node = ToolNode([web_search_tool, ocr_image_tool, parse_excel_tool])
# ─── 5) Build the StateGraph ───
graph = StateGraph(AgentState)
# 5.a) Register nodes
graph.add_node("plan", plan_node)
graph.add_node("tools", tool_node)
graph.add_node("run_tools", run_tools)
graph.add_node("finalize", finalize_node)
# 5.b) START → plan
graph.add_edge(START, "plan")
def route_plan(plan_out: AgentState) -> str:
"""
plan_out is exactly what plan_node returned (a partial AgentState).
If it set any of the tool-request keys, route to 'tools'; otherwise 'finalize'.
"""
if plan_out.get("web_search_query") or plan_out.get("ocr_path") or plan_out.get("excel_path"):
return "tools"
return "finalize"
graph.add_conditional_edges(
"plan",
route_plan,
{"tools": "tools", "finalize": "finalize"}
)
graph.add_edge("tools", "run_tools")
# 5.e) run_tools → finalize
graph.add_edge("run_tools", "finalize")
# 5.f) finalize → END
graph.add_edge("finalize", END)
compiled_graph = graph.compile()
def respond_to_input(user_input: str) -> str:
"""
Initialize with a SystemMessage (tools description) and the user’s question as a HumanMessage.
Then run through plan → tools → run_tools → finalize. Return the "final_answer" from final_state.
"""
# 1) Create a SystemMessage that tells the agent about its tools
system_msg = SystemMessage(
content=(
"You have access to exactly these tools:\n"
" 1) web_search(query:str) → Returns the top search results for the query.\n"
" 2) parse_excel(path:str, sheet_name:str) → Reads an Excel file and returns its contents.\n"
" 3) ocr_image(path:str) → Runs OCR on an image and returns any detected text.\n\n"
"If you need a tool, set exactly one of these keys in a Python‐dict:\n"
" • web_search_query: <search terms>\n"
" • ocr_path: <path to image>\n"
" • excel_path: <path to xlsx>\n"
" • excel_sheet_name: <sheet name>\n"
"Otherwise, set final_answer: <your answer>.\n"
"Respond with that Python dict literal—no extra text or explanation."
)
)
# 2) Wrap the user_input in a HumanMessage
human_msg = HumanMessage(content=user_input)
# 3) Build the initial state so that "messages" contains both messages
initial_state: AgentState = {
"messages": [system_msg, human_msg],
"user_input": user_input
}
# 4) Invoke the compiled graph (no second argument needed)
final_state = compiled_graph.invoke(initial_state)
# 5) Return the final answer (or a fallback if missing)
return final_state.get("final_answer", "Error: No final answer generated.")
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
return respond_to_input(question)
# return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
# print("LangGraph version:", langgraph.__version__)
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# import langgraph
# print("▶︎ LangGraph version:", langgraph.__version__)
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |