GroundBi / app.py
naonauno's picture
Update app.py
097fdcb verified
raw
history blame
5.71 kB
import gradio as gr
import torch
import numpy as np
import cv2
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
from model import UNet2DConditionModelEx
from pipeline import StableDiffusionControlLoraV3Pipeline
from PIL import Image
import os
from huggingface_hub import login
import spaces
import random
from pathlib import Path
# Login using the token
login(token=os.environ.get("HF_TOKEN"))
# For deterministic generation
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
# Initialize the models
base_model = "runwayml/stable-diffusion-v1-5"
dtype = torch.float16
# Load the custom UNet
unet = UNet2DConditionModelEx.from_pretrained(
base_model,
subfolder="unet",
torch_dtype=dtype
)
unet = unet.add_extra_conditions("ow-gbi-control-lora")
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
base_model,
unet=unet,
torch_dtype=dtype
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(
"models",
weight_name="40kHalf.safetensors"
)
def get_random_condition_image():
conditions_dir = Path("conditions")
if conditions_dir.exists():
image_files = list(conditions_dir.glob("*.[jp][pn][g]")) # matches .jpg, .png, .jpeg
if image_files:
random_image = random.choice(image_files)
return str(random_image)
return None
def get_canny_image(image, low_threshold=100, high_threshold=200):
if isinstance(image, Image.Image):
image = np.array(image)
if image.shape[2] == 4:
image = image[..., :3]
canny_image = cv2.Canny(image, low_threshold, high_threshold)
canny_image = np.stack([canny_image] * 3, axis=-1)
return Image.fromarray(canny_image)
@spaces.GPU(duration=120)
def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps, low_threshold, high_threshold, seed):
if seed is not None and seed != "":
try:
generator = torch.Generator().manual_seed(int(seed))
except ValueError:
generator = torch.Generator()
else:
generator = torch.Generator()
canny_image = get_canny_image(input_image, low_threshold, high_threshold)
with torch.no_grad():
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=guidance_scale,
image=canny_image,
extra_condition_scale=1.0,
generator=generator
).images[0]
return canny_image, image
def random_image_click():
image_path = get_random_condition_image()
if image_path:
return Image.open(image_path)
return None
# Example data
examples = [
[
"conditions/example1.jpg", # Replace with actual paths
"a futuristic cyberpunk city",
"blurry, bad quality",
7.5,
50,
100,
200,
42
],
[
"conditions/example2.jpg", # Replace with actual paths
"a serene mountain landscape",
"dark, gloomy",
7.0,
40,
120,
180,
123
]
]
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Control LoRA v3 Demo
⚠️ Warning: This is a demo of Control LoRA v3. Please be aware that generation can take several minutes.
The model uses edge detection to guide the image generation process.
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
random_image_btn = gr.Button("Load Random Reference Image")
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here... (e.g., 'a futuristic cyberpunk city')"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Enter things you don't want to see... (e.g., 'blurry, bad quality')"
)
with gr.Row():
low_threshold = gr.Slider(minimum=1, maximum=255, value=100, label="Canny Low Threshold")
high_threshold = gr.Slider(minimum=1, maximum=255, value=200, label="Canny High Threshold")
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
seed = gr.Textbox(label="Seed (empty for random)", placeholder="Enter a number for reproducible results")
generate = gr.Button("Generate")
with gr.Column():
canny_output = gr.Image(label="Canny Edge Detection")
result = gr.Image(label="Generated Image")
# Set up example gallery
gr.Examples(
examples=examples,
inputs=[
input_image,
prompt,
negative_prompt,
guidance_scale,
steps,
low_threshold,
high_threshold,
seed
],
outputs=[canny_output, result],
fn=generate_image,
cache_examples=True
)
# Handle the random image button
random_image_btn.click(
fn=random_image_click,
outputs=input_image
)
# Handle the generate button
generate.click(
fn=generate_image,
inputs=[
input_image,
prompt,
negative_prompt,
guidance_scale,
steps,
low_threshold,
high_threshold,
seed
],
outputs=[canny_output, result]
)
demo.launch()