File size: 5,714 Bytes
e29a7a0
 
13e41c1
 
84ab83e
7ad3690
 
13e41c1
 
 
e14967b
097fdcb
 
13e41c1
 
 
 
097fdcb
 
 
 
13e41c1
 
097fdcb
fb70850
13e41c1
 
 
fb70850
e14967b
e29a7a0
 
13e41c1
 
 
 
 
e14967b
13e41c1
fb70850
84ab83e
 
fb70850
13e41c1
 
fb70850
e29a7a0
097fdcb
 
 
 
 
 
 
 
 
13e41c1
 
 
 
 
 
 
 
 
 
 
097fdcb
 
 
 
 
 
 
 
 
 
13e41c1
 
e29a7a0
 
 
 
 
 
7ad3690
097fdcb
 
e29a7a0
13e41c1
 
e29a7a0
097fdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29a7a0
 
097fdcb
 
 
 
 
 
 
 
e29a7a0
 
13e41c1
097fdcb
 
 
 
 
 
 
 
 
 
13e41c1
 
 
e29a7a0
 
097fdcb
e29a7a0
 
 
13e41c1
e29a7a0
 
097fdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29a7a0
 
13e41c1
 
 
 
 
 
 
097fdcb
 
13e41c1
 
e29a7a0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import torch
import numpy as np
import cv2
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
from model import UNet2DConditionModelEx
from pipeline import StableDiffusionControlLoraV3Pipeline 
from PIL import Image
import os
from huggingface_hub import login
import spaces
import random
from pathlib import Path

# Login using the token
login(token=os.environ.get("HF_TOKEN"))

# For deterministic generation
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True

# Initialize the models
base_model = "runwayml/stable-diffusion-v1-5"
dtype = torch.float16

# Load the custom UNet
unet = UNet2DConditionModelEx.from_pretrained(
    base_model,
    subfolder="unet",
    torch_dtype=dtype
)

unet = unet.add_extra_conditions("ow-gbi-control-lora")

pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
    base_model, 
    unet=unet,
    torch_dtype=dtype
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(
    "models",
    weight_name="40kHalf.safetensors"
)

def get_random_condition_image():
    conditions_dir = Path("conditions")
    if conditions_dir.exists():
        image_files = list(conditions_dir.glob("*.[jp][pn][g]"))  # matches .jpg, .png, .jpeg
        if image_files:
            random_image = random.choice(image_files)
            return str(random_image)
    return None

def get_canny_image(image, low_threshold=100, high_threshold=200):
    if isinstance(image, Image.Image):
        image = np.array(image)
    
    if image.shape[2] == 4:
        image = image[..., :3]
    
    canny_image = cv2.Canny(image, low_threshold, high_threshold)
    canny_image = np.stack([canny_image] * 3, axis=-1)
    return Image.fromarray(canny_image)

@spaces.GPU(duration=120)
def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps, low_threshold, high_threshold, seed):
    if seed is not None and seed != "":
        try:
            generator = torch.Generator().manual_seed(int(seed))
        except ValueError:
            generator = torch.Generator()
    else:
        generator = torch.Generator()

    canny_image = get_canny_image(input_image, low_threshold, high_threshold)
    
    with torch.no_grad():
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            image=canny_image,
            extra_condition_scale=1.0,
            generator=generator
        ).images[0]
    
    return canny_image, image

def random_image_click():
    image_path = get_random_condition_image()
    if image_path:
        return Image.open(image_path)
    return None

# Example data
examples = [
    [
        "conditions/example1.jpg",  # Replace with actual paths
        "a futuristic cyberpunk city",
        "blurry, bad quality",
        7.5,
        50,
        100,
        200,
        42
    ],
    [
        "conditions/example2.jpg",  # Replace with actual paths
        "a serene mountain landscape",
        "dark, gloomy",
        7.0,
        40,
        120,
        180,
        123
    ]
]

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Control LoRA v3 Demo
        ⚠️ Warning: This is a demo of Control LoRA v3. Please be aware that generation can take several minutes. 
        The model uses edge detection to guide the image generation process.
        """
    )
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy")
            random_image_btn = gr.Button("Load Random Reference Image")
            
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here... (e.g., 'a futuristic cyberpunk city')"
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                placeholder="Enter things you don't want to see... (e.g., 'blurry, bad quality')"
            )
            with gr.Row():
                low_threshold = gr.Slider(minimum=1, maximum=255, value=100, label="Canny Low Threshold")
                high_threshold = gr.Slider(minimum=1, maximum=255, value=200, label="Canny High Threshold")
            guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
            steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
            seed = gr.Textbox(label="Seed (empty for random)", placeholder="Enter a number for reproducible results")
            generate = gr.Button("Generate")
        
        with gr.Column():
            canny_output = gr.Image(label="Canny Edge Detection")
            result = gr.Image(label="Generated Image")
    
    # Set up example gallery
    gr.Examples(
        examples=examples,
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            guidance_scale,
            steps,
            low_threshold,
            high_threshold,
            seed
        ],
        outputs=[canny_output, result],
        fn=generate_image,
        cache_examples=True
    )

    # Handle the random image button
    random_image_btn.click(
        fn=random_image_click,
        outputs=input_image
    )

    # Handle the generate button
    generate.click(
        fn=generate_image,
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            guidance_scale,
            steps,
            low_threshold,
            high_threshold,
            seed
        ],
        outputs=[canny_output, result]
    )

demo.launch()