|
from sentence_transformers import SentenceTransformer, util |
|
|
|
MODELS = { |
|
"all-MiniLM-L6-v2": SentenceTransformer("all-MiniLM-L6-v2"), |
|
"multi-qa-MiniLM-L6-cos-v1": SentenceTransformer("multi-qa-MiniLM-L6-cos-v1"), |
|
"paraphrase-MiniLM-L3-v2": SentenceTransformer("paraphrase-MiniLM-L3-v2"), |
|
"all-mpnet-base-v2": SentenceTransformer("all-mpnet-base-v2"), |
|
"distilbert-base-nli-mean-tokens": SentenceTransformer("distilbert-base-nli-mean-tokens"), |
|
} |
|
|
|
def score_fit(text: str, goal: str, method: str) -> dict: |
|
results = {} |
|
for name, model in MODELS.items(): |
|
emb1 = model.encode(text, convert_to_tensor=True) |
|
emb2 = model.encode(goal, convert_to_tensor=True) |
|
cos = util.cos_sim(emb1, emb2).item() |
|
score = max(0, min(100, int((cos + 1) * 50))) |
|
results[name] = score |
|
return results |
|
|