File size: 5,887 Bytes
df0d440
 
 
be16e3e
105430f
ed25dd4
b17860b
840bb85
c507cd4
ed25dd4
df0d440
 
 
 
840bb85
105430f
df0d440
105430f
4acae3e
105430f
161d980
e548086
105430f
a7f0ae3
105430f
4acae3e
105430f
 
 
 
16ac16b
 
7114c54
4acae3e
 
696f1ca
105430f
 
 
 
4acae3e
105430f
9a98ec7
105430f
696f1ca
105430f
 
e720316
be16e3e
df0d440
c507cd4
 
 
 
 
 
 
df0d440
 
 
 
105430f
df0d440
 
c507cd4
 
 
be16e3e
 
 
 
df0d440
 
be16e3e
 
52063f0
 
 
 
 
 
2b81936
 
fb0868b
 
 
 
14c5f38
75856bb
 
14c5f38
75856bb
 
14c5f38
75856bb
 
 
 
14c5f38
75856bb
 
fc86ba5
75856bb
3bf0eab
75856bb
 
c507cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52063f0
2b81936
52063f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df0d440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c120b4
 
be16e3e
 
0c120b4
 
df0d440
 
be16e3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import time
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pathlib import Path
from ultralytics import YOLO
import io
import base64

# Disable tensorflow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from tensorflow import keras
from flask import Flask, jsonify, request, render_template, send_file
import torch

load_type = 'local'

MODEL_NAME = "yolo11_detect_best_241018_1.pt"
MODEL_DIR = "./artifacts/models"
YOLO_DIR = "./artifacts/yolo"
#REPO_ID = "1vash/mnist_demo_model"

# Load the saved YOLO model into memory
if load_type == 'local':
    # 本地模型路徑
    model_path = f'{MODEL_DIR}/{MODEL_NAME}'
    if not os.path.exists(model_path):
        raise FileNotFoundError(f"Model file not found at {model_path}")
        
    model = YOLO(model_path)
    #model.eval()  # 設定模型為推理模式
elif load_type == 'remote_hub_download':
    from huggingface_hub import hf_hub_download

    # 從 Hugging Face Hub 下載模型
    model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME)
    model = torch.load(model_path)
    model.eval()
elif load_type == 'remote_hub_from_pretrained':
    # 使用 Hugging Face Hub 預訓練的模型方式下載
    os.environ['TRANSFORMERS_CACHE'] = str(Path(MODEL_DIR).absolute())
    from huggingface_hub import from_pretrained

    model = from_pretrained(REPO_ID, filename=MODEL_NAME, cache_dir=MODEL_DIR)
    model.eval()
else:
    raise AssertionError('No load type is specified!')


def image_to_base64(image_path):
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
        return encoded_string


# Initialize the Flask application
app = Flask(__name__)


# API route for prediction(YOLO)
@app.route('/predict', methods=['POST'])
def predict():

    user_id = request.args.get('user_id') 
    
    if 'image' not in request.files:
        # Handle if no file is selected
        return 'No file selected'

    start_time = time.time()

    file = request.files['image']

    # 讀取圖像
    try:
        image_data = Image.open(file)
    except Exception as e:
        return jsonify({'error': str(e)}), 400

    # Make a prediction using YOLO
    results = model(image_data)
    
    # 檢查 YOLO 是否返回了有效的結果
    if results is None or len(results) == 0:
        return jsonify({'error': 'No results from YOLO model'}), 400

    # # 渲染推理結果到圖像
    # img_with_boxes = results[0].plot()  # 使用 results[0],假設只有一張圖像作推理

    # # 將 numpy array 轉換為 PIL Image
    # img = Image.fromarray(img_with_boxes)

    # # 儲存圖片到內存緩衝區
    # img_io = io.BytesIO()
    # img.save(img_io, 'PNG')
    # img_io.seek(0)

    # # 返回處理後的圖像
    # return send_file(img_io, mimetype='image/png')

    saved_images = []
    
    # 儲存辨識後的圖片到指定資料夾
    for result in results:
        # 保存圖片
        result.save_crop(f"{YOLO_DIR}/{user_id}")
        
        num_detections = len(result.boxes)  # Get the number of detections
        labels = result.boxes.cls  # Get predicted label IDs
        label_names = [model.names[int(label)] for label in labels]  # Convert to names

        encoded_images=[]

        for label_name in label_names:
            output_file=f"{YOLO_DIR}/{user_id}/{label_name}/im.jpg.jpg"
            # 將圖片轉換為 base64 編碼
            encoded_images.append(image_to_base64(output_file))
            
        # 建立回應資料
        response_data = {
            'images': encoded_images,
            'description': label_names
        }
    return jsonify(response_data)


    # # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
    # # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
    # # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
    # return jsonify(response)


# # Helper function to preprocess the image
# def preprocess_image(image_data):
#     """Preprocess image for YOLO Model Inference

#     :param image_data: Raw image (PIL.Image)
#     :return: image: Preprocessed Image (Tensor)
#     """
#     # Define the YOLO input size (example 640x640, you can modify this based on your model)
#     input_size = (640, 640)

#     # Define transformation: Resize the image, convert to Tensor, and normalize pixel values
#     transform = transforms.Compose([
#         transforms.Resize(input_size),       # Resize to YOLO input size
#         transforms.ToTensor(),               # Convert image to PyTorch Tensor (通道數、影像高度和寬度)
#         transforms.Normalize([0.0, 0.0, 0.0], [1.0, 1.0, 1.0])  # Normalization (if needed)
#     ])

#     # Apply transformations to the image
#     image = transform(image_data)

#     # Add batch dimension (1, C, H, W) since YOLO expects a batch
#     image = image.unsqueeze(0)

#     return image


# API route for health check
@app.route('/health', methods=['GET'])
def health():
    """
    Health check API to ensure the application is running.
    Returns "OK" if the application is healthy.
    Demo Usage: "curl http://localhost:5000/health" or using alias "curl http://127.0.0.1:5000/health"
    """
    return 'OK'


# API route for version
@app.route('/version', methods=['GET'])
def version():
    """
    Returns the version of the application.
    Demo Usage: "curl http://127.0.0.1:5000/version" or using alias "curl http://127.0.0.1:5000/version"
    """
    return '1.0'


@app.route("/")
def hello_world():
    return render_template("index.html")
    # return "<p>Hello, Team!</p>"


# Start the Flask application
if __name__ == '__main__':
    app.run(debug=True)