File size: 7,805 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
f0f9b27
 
 
51a3749
68ded6f
e199881
8bc43cc
942bf87
68ded6f
f0f9b27
 
 
68ded6f
f0f9b27
68ded6f
248a61c
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
68ded6f
3b84715
aa6838a
f0f9b27
 
68ded6f
c63f76d
68ded6f
bee2eef
68ded6f
 
8319384
bee2eef
 
8319384
f3b700a
f0f9b27
68ded6f
 
f0f9b27
9748994
68ded6f
 
 
 
 
 
 
 
 
 
 
 
 
 
0c1f1e9
 
68ded6f
0c1f1e9
 
 
 
f0f9b27
 
0c1f1e9
68ded6f
 
 
 
0c1f1e9
68ded6f
 
 
 
0c1f1e9
68ded6f
 
 
 
0c1f1e9
68ded6f
 
 
 
0c1f1e9
 
 
68ded6f
0c1f1e9
68ded6f
 
 
 
 
0c1f1e9
68ded6f
 
 
 
 
0c1f1e9
68ded6f
0c1f1e9
 
68ded6f
 
357b75d
68ded6f
 
357b75d
 
68ded6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from math import expm1

# Load AMP Classifier
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# Load ProtBert Globally
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()

# Selected Features
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

# AMP Feature Extractor
def extract_features(sequence):
    all_features_dict = {}
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return "Error: Sequence too short."
    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
    filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
    ctd_features = CTD.CalculateCTD(sequence)
    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
    all_features_dict.update(ctd_features)
    all_features_dict.update(filtered_dipeptide_features)
    all_features_dict.update(auto_features)
    all_features_dict.update(pseudo_features)
    feature_df_all = pd.DataFrame([all_features_dict])
    normalized_array = scaler.transform(feature_df_all.values)
    normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)
    selected_df = normalized_df[selected_features].fillna(0)
    return selected_df.values

# AMP Classifier
def predict(sequence):
    features = extract_features(sequence)
    if isinstance(features, str):
        return features
    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]
    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

# MIC Predictor
def predictmic(sequence):
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}
    seq_spaced = ' '.join(list(sequence))
    tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
    tokens = {k: v.to(device) for k, v in tokens.items()}
    with torch.no_grad():
        outputs = protbert_model(**tokens)
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
    bacteria_config = {
        "E.coli": {
            "model": "coli_xgboost_model.pkl",
            "scaler": "coli_scaler.pkl",
            "pca": None
        },
        "S.aureus": {
            "model": "aur_xgboost_model.pkl",
            "scaler": "aur_scaler.pkl",
            "pca": None
        },
        "P.aeruginosa": {
            "model": "arg_xgboost_model.pkl",
            "scaler": "arg_scaler.pkl",
            "pca": None
        },
        "K.Pneumonia": {
            "model": "pne_mlp_model.pkl",
            "scaler": "pne_scaler.pkl",
            "pca": "pne_pca.pkl"
        }
    }
    mic_results = {}
    for bacterium, cfg in bacteria_config.items():
        try:
            scaler = joblib.load(cfg["scaler"])
            scaled = scaler.transform(embedding)
            if cfg["pca"]:
                pca = joblib.load(cfg["pca"])
                transformed = pca.transform(scaled)
            else:
                transformed = scaled
            model = joblib.load(cfg["model"])
            mic_log = model.predict(transformed)[0]
            mic = round(expm1(mic_log), 3)
            mic_results[bacterium] = mic
        except Exception as e:
            mic_results[bacterium] = f"Error: {str(e)}"
    return mic_results

# Combined Prediction
def full_prediction(sequence):
    features = extract_features(sequence)
    if isinstance(features, str):
        return "Error", "0%", {}
    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]
    amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
    confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
    mic_values = predictmic(sequence)
    return amp_result, f"{confidence}%", mic_values

# Gradio Interface
iface = gr.Interface(
    fn=full_prediction,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=[
        gr.Label(label="AMP Classification"),
        gr.Label(label="Confidence"),
        gr.JSON(label="Predicted MIC (µM) for Each Bacterium")
    ],
    title="AMP & MIC Predictor",
    description="Enter an amino acid sequence (≥10 valid letters) to predict AMP class and MIC values."
)

iface.launch(share=True)