audio-flamingo-3 / llava /model /configuration_llava.py
SreyanG-NVIDIA's picture
Upload 225 files
174ae06 verified
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from typing import Literal, Optional
from pydantic import BaseModel, Field
from transformers import PretrainedConfig
class LlavaConfig(PretrainedConfig):
model_type = "llava"
def __init__(
self,
llm_cfg=None,
vision_tower_cfg=None,
speech_tower_cfg=None,
sound_tower_cfg=None,
mm_projector_cfg=None,
speech_mm_projector_cfg=None,
sound_mm_projector_cfg=None,
architectures=None,
resume_path=None,
hidden_size=None,
mm_hidden_size=None,
speech_hidden_size=None,
sound_hidden_size=None,
image_aspect_ratio=None,
num_video_frames=None,
fps=None,
mm_vision_select_layer=None,
mm_vision_select_feature=None,
mm_use_im_start_end=False,
mm_use_im_patch_token=False,
mm_projector_lr=None,
speech_mm_projector_lr=None,
sound_mm_projector_lr=None,
vision_tower_lr=None,
speech_tower_lr=None,
sound_tower_lr=None,
vision_resolution=None,
interpolate_mode=None,
s2=None,
dynamic_s2=None,
s2_scales=None,
s2_max_split_size=None,
s2_resize_output_to_scale_idx=0,
min_tiles: Optional[int] = 1,
max_tiles: Optional[int] = 12,
video_max_tiles: Optional[int] = 1,
num_time_tokens=None,
time_token_format=None,
image_encoder: str = '{"_target_": "llava.model.encoders.BasicImageEncoder"}',
video_encoder: str = '{"_target_": "llava.model.encoders.BasicVideoEncoder"}',
speech_encoder: str = '{"_target_": "llava.model.encoders.BasicSpeechEncoder"}',
sound_encoder: str = '{"_target_": "llava.model.encoders.BasicSoundEncoder"}',
**kwargs,
):
super().__init__()
self.architectures = architectures
self.llm_cfg = llm_cfg
self.vision_tower_cfg = vision_tower_cfg
self.speech_tower_cfg = speech_tower_cfg
self.sound_tower_cfg = sound_tower_cfg
self.mm_projector_cfg = mm_projector_cfg
self.speech_mm_projector_cfg = speech_mm_projector_cfg
self.sound_mm_projector_cfg = sound_mm_projector_cfg
self.resume_path = resume_path
self.hidden_size = hidden_size
self.mm_hidden_size = mm_hidden_size
self.speech_hidden_size = speech_hidden_size
self.sound_hidden_size = sound_hidden_size
self.image_aspect_ratio = image_aspect_ratio
self.num_video_frames = num_video_frames
self.fps = fps
self.mm_vision_select_layer = mm_vision_select_layer
self.mm_vision_select_feature = mm_vision_select_feature
self.mm_use_im_start_end = mm_use_im_start_end
self.mm_use_im_patch_token = mm_use_im_patch_token
self.mm_projector_lr = mm_projector_lr
self.speech_mm_projector_lr = speech_mm_projector_lr
self.sound_mm_projector_lr = sound_mm_projector_lr
self.vision_tower_lr = vision_tower_lr
self.speech_tower_lr = speech_tower_lr
self.sound_tower_lr = sound_tower_lr
self.vision_resolution = vision_resolution
self.interpolate_mode = interpolate_mode
self.s2 = s2
self.dynamic_s2 = dynamic_s2
self.s2_scales = s2_scales
self.s2_max_split_size = s2_max_split_size
self.s2_resize_output_to_scale_idx = s2_resize_output_to_scale_idx
self.min_tiles = min_tiles
self.max_tiles = max_tiles
self.video_max_tiles = video_max_tiles
self.num_time_tokens = num_time_tokens
self.time_token_format = time_token_format
self.image_encoder = image_encoder
self.video_encoder = video_encoder
self.speech_encoder = speech_encoder
self.sound_encoder = sound_encoder
class JsonSchemaResponseFormat(BaseModel):
schema_: str = Field(alias="schema")
class ResponseFormat(BaseModel):
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[JsonSchemaResponseFormat] = None