Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import json | |
import logging | |
import os | |
import os.path as osp | |
import warnings | |
from abc import ABC | |
from collections import OrderedDict, defaultdict, deque | |
from itertools import chain | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from einops import rearrange | |
from hydra.utils import instantiate | |
from transformers import AutoConfig, GenerationConfig, LogitsProcessor, PreTrainedModel | |
from transformers.modeling_utils import ContextManagers, no_init_weights | |
from llava.constants import DEFAULT_SOUND_TOKEN,DEFAULT_SPEECH_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS | |
from llava.mm_utils import process_image, process_images, process_sounds,process_sound_masks | |
from llava.model.configuration_llava import LlavaConfig, ResponseFormat | |
from llava.model.language_model.builder import build_llm_and_tokenizer | |
from llava.model.multimodal_encoder.builder import build_sound_tower | |
from llava.model.multimodal_projector.builder import build_speech_mm_projector, build_sound_mm_projector | |
from llava.model.utils import get_model_config | |
from llava.train.sequence_parallel import get_pg_manager | |
from llava.utils import distributed | |
from llava.utils.media import extract_media | |
from llava.utils.tokenizer import tokenize_conversation | |
class LlavaMetaModel(ABC): | |
def _init_llm(self, llm_cfg, config, *args, **kwargs): | |
llm, tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs) | |
return llm, tokenizer | |
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs): | |
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation. | |
if hasattr(self, "llm") or hasattr(self, "vision_tower") or hasattr(self, "speech_tower") or hasattr(self, "sound_tower") or hasattr(self, "mm_projector") or hasattr(self, "speech_mm_projector") or hasattr(self, "sound_mm_projector"): | |
# already initialized, skipped | |
return | |
model_dtype = getattr(config, "model_dtype", "torch.float16") | |
if not hasattr(config, "model_dtype"): | |
warnings.warn("model_dtype not found in config, defaulting to torch.float16.") | |
config.model_dtype = model_dtype | |
cfgs = get_model_config(config) | |
print(cfgs) | |
if len(cfgs) == 7: | |
llm_cfg, vision_tower_cfg, speech_tower_cfg,sound_tower_cfg, mm_projector_cfg, speech_mm_projector_cfg,sound_mm_projector_cfg = cfgs | |
else: | |
raise ValueError("`llm_cfg` `mm_projector_cfg` `speech_mm_projector_cfg` `sound_mm_projector_cfg` `vision_tower_cfg` `speech_tower_cfg` `sound_tower_cfg` not found in the config.") | |
self.llm, self.tokenizer = self._init_llm(llm_cfg, config, *args, **kwargs) | |
self.sound_tower = build_sound_tower(sound_tower_cfg, config) | |
self.sound_mm_projector = build_sound_mm_projector(sound_mm_projector_cfg, config) | |
if isinstance(self.config, dict): | |
self.vocab_size = config.llm_cfg["vocab_size"] + NUM_EXTRA_TOKENS | |
else: | |
self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS | |
logging.info( | |
f"[XGrammar] config is not a dict, loading vocab size from tokenizer {self.tokenizer.vocab_size} + {NUM_EXTRA_TOKENS} => {self.vocab_size}" | |
) | |
# XGrammar tokenizer and grammar compiler | |
# lazy init only when specified json output during inference | |
self.grammar_compiler = None | |
self.encoders = {} | |
for name in ["sound"]: | |
config = getattr(self.config, f"{name}_encoder") | |
if isinstance(config, str): | |
config = json.loads(config) | |
self.encoders[name] = instantiate(config, parent=self) | |
self.post_config() | |
self.is_loaded = True | |
assert ( | |
self.llm is not None or self.vision_tower is not None or self.speech_tower is not None or self.mm_projector is not None or self.speech_mm_projector is not None | |
), "At least one of the components must be instantiated." | |
def load_from_config(cls, model_path_or_config, *args, **kwargs): | |
pass | |
## FIXME we will use this function to load model in the future | |
def load_pretrained(cls, model_path_or_config, *args, **kwargs): | |
kwargs.pop("config", None) | |
if isinstance(model_path_or_config, str): | |
config = AutoConfig.from_pretrained(model_path_or_config) | |
elif isinstance(model_path_or_config, LlavaConfig): | |
config = model_path_or_config | |
else: | |
raise NotImplementedError( | |
f"wrong type, {type(model_path_or_config)} \ | |
{isinstance(model_path_or_config, LlavaConfig)}" | |
) | |
model_dtype = getattr(config, "model_dtype", "torch.float16") | |
if not hasattr(config, "model_dtype"): | |
warnings.warn("model_dtype not found in config, defaulting to torch.float16.") | |
config.model_dtype = model_dtype | |
cfgs = get_model_config(config) | |
if len(cfgs) == 7: | |
llm_cfg, vision_tower_cfg, speech_tower_cfg,sound_tower_cfg, mm_projector_cfg, speech_mm_projector_cfg,sound_mm_projector_cfg = cfgs | |
else: | |
raise ValueError("`llm_cfg` `mm_projector_cfg` `speech_mm_projector_cfg` `sound_mm_projector_cfg` `vision_tower_cfg` `speech_tower_cfg` `sound_tower_cfg` not found in the config.") | |
init_context = [ | |
no_init_weights(_enable=True), | |
] | |
with ContextManagers(init_context): | |
vlm = cls(config, *args, **kwargs) | |
if hasattr(vlm, "llm") or hasattr(vlm, "vision_tower") or hasattr(vlm, "speech_tower") or hasattr(vlm, "sound_tower") or hasattr(vlm, "mm_projector") or hasattr(vlm, "speech_mm_projector") or hasattr(vlm, "sound_mm_projector"): | |
if vlm.is_loaded: | |
return vlm | |
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs) | |
vlm.sound_tower = build_sound_tower(sound_tower_cfg, config) | |
vlm.sound_mm_projector = build_sound_mm_projector(sound_mm_projector_cfg, config) | |
self.post_config() | |
self.is_loaded = True | |
# FIXME(ligeng, yunhao): llm should never be none here. | |
assert ( | |
vlm.llm is not None or vlm.vision_tower is not None or vlm.speech_tower is not None or vlm.mm_projector is not None or vlm.speech_mm_projector is not None | |
), "At least one of the components must be instantiated." | |
return vlm | |
## FIXME we will use this function to save the model in the future | |
def save_pretrained(self, output_dir, state_dict=None): | |
if state_dict is None: | |
# other wise fetch from deepspeed | |
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled) | |
state_dict = self.state_dict() | |
if getattr(self, "tokenizer", None): | |
self.tokenizer.save_pretrained(osp.join(output_dir, "llm")) | |
if self.get_llm(): | |
print(f"saving llm to {osp.join(output_dir, 'llm')}") | |
self.llm.config._name_or_path = osp.join(output_dir, "llm") | |
llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}) | |
self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict) | |
self.config.llm_cfg = self.llm.config | |
if self.get_sound_tower(): | |
print(f"saving sound_tower to {osp.join(output_dir, 'sound_tower')}") | |
self.sound_tower.config._name_or_path = osp.join(output_dir, "sound_tower") | |
sound_tower_state_dict = OrderedDict( | |
{k.split("sound_tower.sound_tower.")[-1]: v for k, v in state_dict.items() if "sound_tower" in k} | |
) | |
self.sound_tower.sound_tower.save_pretrained( | |
os.path.join(output_dir, "sound_tower"), | |
state_dict=sound_tower_state_dict, | |
) | |
self.config.sound_tower_cfg = self.sound_tower.config | |
if self.get_sound_mm_projector(): | |
print(f"saving sound_mm_projector to {osp.join(output_dir, 'sound_mm_projector')}") | |
self.sound_mm_projector.config._name_or_path = osp.join(output_dir, "sound_mm_projector") | |
sound_mm_projector_state_dict = OrderedDict( | |
{k.split("sound_mm_projector.")[-1]: v for k, v in state_dict.items() if "sound_mm_projector" in k} | |
) | |
self.sound_mm_projector.save_pretrained( | |
os.path.join(output_dir, "sound_mm_projector"), | |
state_dict=sound_mm_projector_state_dict, | |
) | |
self.config.sound_mm_projector_cfg = self.sound_mm_projector.config | |
## update and save top-level config | |
self.config._name_or_path = output_dir | |
self.config.architectures = [self.__class__.__name__] | |
self.config.save_pretrained(output_dir) | |
def get_llm(self): | |
llm = getattr(self, "llm", None) | |
if type(llm) is list: | |
llm = llm[0] | |
return llm | |
def get_lm_head(self): | |
lm_head = getattr(self.get_llm(), "lm_head", None) | |
return lm_head | |
def get_sound_tower(self): | |
sound_tower = getattr(self, "sound_tower", None) | |
if type(sound_tower) is list: | |
sound_tower = sound_tower[0] | |
return sound_tower | |
def get_sound_mm_projector(self): | |
sound_mm_projector = getattr(self, "sound_mm_projector", None) | |
if type(sound_mm_projector) is list: | |
sound_mm_projector = sound_mm_projector[0] | |
return sound_mm_projector | |
def post_config(self): | |
self.training = self.get_llm().training | |
## configuration | |
if getattr(self.config, "llm_cfg", None) is None: | |
self.config.llm_cfg = self.llm.config | |
self.config.speech_tower_cfg = self.speech_tower.config | |
if getattr(self.config, "sound_tower_cfg", None) is None: | |
self.config.sound_tower_cfg = self.sound_tower.config | |
if getattr(self.config, "sound_mm_projector_cfg", None) is None: | |
self.config.sound_mm_projector_cfg = self.sound_mm_projector.config | |
def freezed_module_patch(self): | |
""" | |
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules. | |
""" | |
if self.training: | |
if self.get_llm() and not getattr(self.config, "tune_language_model", False): | |
pass | |
if self.get_sound_tower() and not getattr(self.config, "tune_sound_tower", False): | |
self.get_sound_tower().eval() | |
if self.get_sound_mm_projector() and not getattr(self.config, "tune_sound_mm_projector", False): | |
self.get_sound_mm_projector().eval() | |
def encode_sound(self, sounds, masks=None): | |
sound_features = self.get_sound_tower()(sounds, masks) | |
sound_features = self.get_sound_mm_projector()(sound_features) | |
return sound_features | |
## @yunhao: is there a better way to handle function call and attributes for llm? | |
## support beam search | |
def _temporary_reorder_cache(self, past_key_values, sorted_idx): | |
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx) | |
def get_input_embeddings(self): | |
return self.get_llm().get_input_embeddings() | |
def get_output_embeddings(self): | |
return self.get_llm().get_output_embeddings() | |
def resize_token_embeddings(self, embed_size): | |
self.get_llm().resize_token_embeddings(embed_size) | |
class LlavaMetaForCausalLM(ABC): | |
def _embed( | |
self, | |
input_ids: torch.Tensor, | |
media: Dict[str, List[torch.Tensor]], | |
media_config: Dict[str, Dict[str, Any]], | |
labels: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor], | |
media_meta: Dict[str, Dict[str, Any]]= None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX) | |
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool) | |
PROCESS_GROUP_MANAGER = get_pg_manager() | |
if PROCESS_GROUP_MANAGER is not None: | |
for name in media: | |
self.encoders[name].end_tokens = None | |
# Extract text and media embeddings | |
text_embeds = self.llm.model.embed_tokens(input_ids) | |
media_embeds = self.__embed_media_tokens(media, media_config, media_meta) | |
# This is a workaround to make sure the dummy embeddings are consumed | |
while media_embeds.get("dummy"): | |
dummy_embed = media_embeds["dummy"].popleft() | |
text_embeds += torch.sum(dummy_embed) * 0 | |
# Remove padding | |
batch_size = labels.shape[0] | |
# Build inverse mapping from token ID to media name | |
media_tokens = {} | |
for name, token_id in self.tokenizer.media_token_ids.items(): | |
media_tokens[token_id] = name | |
# -------------------------------- # | |
num_audio_tokens = torch.stack(media_meta["sound_embed_masks"], dim=0).sum(-1) | |
num_audio_tokens = torch.tensor([round(int(x) / 10) * 10 for x in num_audio_tokens]) | |
num_audios = len(media_embeds['sound']) # length of queue is the number of audios we have in total | |
max_audio_tokens, embed_dim = media_embeds['sound'][0].shape | |
audio_features_mask = torch.arange(max_audio_tokens).expand(num_audios, max_audio_tokens).to( | |
num_audio_tokens.device | |
) < num_audio_tokens.unsqueeze(1) | |
audio_embeds = [] | |
while media_embeds['sound']: | |
audio_embeds.append(media_embeds['sound'].popleft()) | |
audio_embeds = torch.stack(audio_embeds,dim=0) | |
masked_audio_features = audio_embeds[audio_features_mask].view(-1, embed_dim) | |
batch_size, sequence_length = input_ids.shape | |
_left_padding = torch.any(attention_mask[:, 0] == 0) | |
_right_padding = torch.any(attention_mask[:, -1] == 0) | |
left_padding = True | |
if batch_size > 1: | |
if _left_padding and not _right_padding: | |
left_padding = True | |
elif not _left_padding and _right_padding: | |
left_padding = False | |
elif not _left_padding and not _right_padding: | |
# both side is 1, so cannot tell | |
left_padding = self.tokenizer.padding_side == "left" | |
else: | |
# invalid attention_mask | |
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") | |
# 1. Create a mask to know where special audio tokens are | |
special_audio_token_mask = input_ids == self.tokenizer.media_token_ids['sound'] #hard coded to just work with 'sound' | |
num_special_audio_tokens = torch.sum(special_audio_token_mask, dim=-1) | |
# In case the Audio model or the Language model has been offloaded to CPU, we need to manually | |
# set the corresponding tensors into their correct target device. | |
target_device = text_embeds.device | |
attention_mask = attention_mask.to(target_device) | |
input_ids = input_ids.to(target_device) | |
num_audio_tokens = num_audio_tokens.to(target_device) | |
batch_indices, non_audio_indices = torch.where( | |
(input_ids != self.tokenizer.media_token_ids['sound']) & (attention_mask == 1) | |
) | |
# 2. Compute the positions where text should be written | |
# Calculate new positions for text tokens in merged audio-text sequence. | |
# `special_audio_token_mask` identifies audio tokens. Each audio token will be replaced by `audio_feat_lengths - 1` text tokens. | |
# `torch.cumsum` computes how each audio token shifts subsequent text token positions. | |
token_placeholder_num = torch.zeros_like(input_ids) | |
token_placeholder_num[special_audio_token_mask] = num_audio_tokens.long() - 1 | |
token_placeholder_num = token_placeholder_num + 1 | |
new_token_positions = torch.cumsum(token_placeholder_num, -1) - 1 | |
max_token_num = token_placeholder_num.sum(-1).max() | |
nb_audio_pad = max_token_num - 1 - new_token_positions[:, -1] | |
if left_padding: | |
new_token_positions += nb_audio_pad[:, None] # offset for left padding | |
text_to_overwrite = new_token_positions[batch_indices, non_audio_indices] | |
batch_indices, non_audio_indices, text_to_overwrite = ( | |
batch_indices.to(target_device), | |
non_audio_indices.to(target_device), | |
text_to_overwrite.to(target_device), | |
) | |
# 3. Create the full embedding, already padded to the maximum position | |
final_embedding = torch.zeros( | |
batch_size, max_token_num, embed_dim, dtype=text_embeds.dtype, device=text_embeds.device | |
) | |
final_attention_mask = torch.zeros( | |
batch_size, max_token_num, dtype=attention_mask.dtype, device=text_embeds.device | |
) | |
final_input_ids = torch.full( | |
(batch_size, max_token_num), self.tokenizer.pad_token_id, dtype=input_ids.dtype, device=text_embeds.device | |
) | |
# 4. Fill the embeddings based on the mask. If we have ["hey" "<audio>", "how", "are"] | |
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the audio features | |
final_embedding[batch_indices, text_to_overwrite] = text_embeds[batch_indices, non_audio_indices] | |
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_audio_indices] | |
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_audio_indices] | |
final_labels = None | |
if labels is not None: | |
labels = labels.to(target_device) | |
final_labels = torch.full_like(final_attention_mask, IGNORE_INDEX, dtype=torch.long) #.to(torch.long) | |
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_audio_indices] | |
# 5. Fill the embeddings corresponding to the audios. Anything that is still zeros needs filling | |
audio_to_overwrite = torch.full( | |
(batch_size, max_token_num), True, dtype=torch.bool, device=text_embeds.device | |
) | |
audio_to_overwrite[batch_indices, text_to_overwrite] = False | |
seq_indices = torch.arange(max_token_num).unsqueeze(0).to(target_device) | |
seq_indices = seq_indices.expand(batch_size, max_token_num) | |
if left_padding: | |
# exclude padding on the left | |
max_token_num = max_token_num.to(target_device) | |
val = (max_token_num - seq_indices) <= ( | |
token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1) | |
)[:, None] | |
else: | |
# exclude padding on the right | |
val = seq_indices < (token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1))[:, None] | |
audio_to_overwrite &= val | |
if audio_to_overwrite.sum() != num_audio_tokens.sum(): | |
raise ValueError( | |
f"The input provided to the model are wrong. The number of audio tokens is {num_special_audio_tokens} while" | |
f" the number of audio given to the model is {num_audios}. This prevents correct indexing and breaks batch generation." | |
) | |
final_embedding[audio_to_overwrite] = ( | |
masked_audio_features.contiguous().reshape(-1, embed_dim).to(target_device) | |
) | |
final_attention_mask |= audio_to_overwrite | |
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) | |
# # Truncate sequences to `model_max_length` as media embeddings are inserted | |
inputs, labels = self.__truncate_sequence(final_embedding, final_labels) | |
return self.__batchify_sequence(inputs, labels) | |
def __embed_media_tokens( | |
self, | |
media: Dict[str, List[torch.Tensor]], | |
media_config: Dict[str, Dict[str, Any]], | |
media_meta: Dict[str, Dict[str, Any]]= None, | |
) -> Dict[str, List[torch.Tensor]]: | |
embeds = defaultdict(deque) | |
for name in media: | |
if self.training: | |
# Gather metainfo of media objects from all ranks | |
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])] | |
infos = list(chain(*distributed.all_gather(info))) | |
# The entire batch does not contain any media objects of this type. | |
if not infos: | |
continue | |
# Create a dummy tensor to ensure the encoder is called, otherwise the training will hang. | |
if media.get(name) is None or len(media[name]) == 0: | |
dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device) | |
embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name])) | |
continue | |
embeds[name] = deque(self.encoders[name](media[name], media_config[name], media_meta['sound_feature_masks'])) # hard coded | |
return embeds | |
def __truncate_sequence( | |
self, inputs: List[torch.Tensor], labels: List[torch.Tensor] | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs): | |
warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).") | |
inputs = [input[: self.tokenizer.model_max_length] for input in inputs] | |
labels = [label[: self.tokenizer.model_max_length] for label in labels] | |
return inputs, labels | |
def __batchify_sequence( | |
self, inputs: List[torch.Tensor], labels: List[torch.Tensor] | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
batch_size = len(inputs) | |
device = inputs[0].device | |
hidden_size = inputs[0].shape[1] | |
max_length = max(inputs[k].shape[0] for k in range(batch_size)) | |
attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device) | |
inputs_p, labels_p = [], [] | |
for k in range(batch_size): | |
size_pk = max_length - inputs[k].shape[0] | |
inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device) | |
labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device) | |
if self.tokenizer.padding_side == "right": | |
attention_mask[k, inputs[k].shape[0] :] = False | |
inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0) | |
labels_pk = torch.cat([labels[k], labels_pk], dim=0) | |
else: | |
attention_mask[k, : -inputs[k].shape[0]] = False | |
inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0) | |
labels_pk = torch.cat([labels_pk, labels[k]], dim=0) | |
inputs_p.append(inputs_pk) | |
labels_p.append(labels_pk) | |
inputs = torch.stack(inputs_p, dim=0) | |
labels = torch.stack(labels_p, dim=0) | |
return inputs, labels, attention_mask | |
def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels): | |
# Handle sequence parallelism | |
PROCESS_GROUP_MANAGER = get_pg_manager() | |
# We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks. | |
if PROCESS_GROUP_MANAGER is not None: | |
sp_degree = PROCESS_GROUP_MANAGER.sp_degree | |
sp_rank = PROCESS_GROUP_MANAGER.sp_rank | |
sp_group = PROCESS_GROUP_MANAGER.sp_pg | |
ring_degree = PROCESS_GROUP_MANAGER.ring_degree | |
ring_rank = PROCESS_GROUP_MANAGER.ring_rank | |
ring_type = PROCESS_GROUP_MANAGER.ring_type | |
ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree | |
ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank | |
bs, shard_seqlen = position_ids.shape | |
sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)] | |
dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group) | |
sp_seq_len_cat = torch.cat(sp_seq_len, dim=0) | |
if sp_rank == 0: | |
original_start_id = 0 | |
else: | |
original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item() | |
original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item() | |
# Gather attention_mask, position_ids, labels and input_embeds | |
all_inputs_embeds = torch.zeros( | |
bs, | |
torch.sum(sp_seq_len_cat), | |
inputs_embeds.shape[-1], | |
dtype=inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
).contiguous() | |
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds | |
dist.barrier(group=sp_group) | |
dist.all_reduce(all_inputs_embeds, group=sp_group) | |
dist.barrier(group=sp_group) | |
attention_mask_list = [ | |
torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device) | |
for i in range(sp_degree) | |
] | |
position_ids_list = [ | |
torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device) | |
for i in range(sp_degree) | |
] | |
labels_list = [ | |
torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree) | |
] | |
dist.all_gather(attention_mask_list, attention_mask, group=sp_group) | |
dist.all_gather(position_ids_list, position_ids, group=sp_group) | |
dist.all_gather(labels_list, labels, group=sp_group) | |
effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)] | |
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1) | |
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0) | |
global_attention_mask_list = [] | |
global_position_ids_list = [] | |
global_labels_list = [] | |
global_inputs_embeds_list = [] | |
for i in range(bs): | |
global_attention_mask_batch_list = [] | |
global_position_ids_batch_list = [] | |
global_labels_batch_list = [] | |
global_inputs_embeds_batch_list = [] | |
for j in range(sp_degree): | |
eff_len = effective_seqlen_batch_list[i][j] | |
prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0 | |
global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len]) | |
global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len]) | |
global_labels_batch_list.append(labels_list[j][i, :eff_len]) | |
global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :]) | |
global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0)) | |
global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0)) | |
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0)) | |
global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0)) | |
global_attention_mask = torch.nn.utils.rnn.pad_sequence( | |
global_attention_mask_list, batch_first=True, padding_value=False | |
) | |
global_position_ids = torch.nn.utils.rnn.pad_sequence( | |
global_position_ids_list, batch_first=True, padding_value=-1 | |
) | |
global_labels = torch.nn.utils.rnn.pad_sequence( | |
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX | |
) | |
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence( | |
global_inputs_embeds_list, batch_first=True, padding_value=0 | |
) | |
# Re-shard the inputs | |
if ring_degree > 1: | |
total_effective_seqlen = torch.sum(effective_seqlen, dim=1) | |
new_seqlen_per_rank = total_effective_seqlen // sp_degree | |
assert torch.all( | |
total_effective_seqlen % sp_degree == 0 | |
), "total_effective_seqlen must be divisible by sp_degree" | |
max_new_seqlen = torch.max(new_seqlen_per_rank).item() | |
new_attention_mask = torch.zeros( | |
(bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device | |
) | |
new_position_ids = torch.zeros( | |
(bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device | |
) | |
new_labels = torch.full( | |
(bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device | |
) | |
new_inputs_embeds = torch.zeros( | |
(bs, max_new_seqlen, global_inputs_embeds.shape[-1]), | |
dtype=global_inputs_embeds.dtype, | |
device=global_inputs_embeds.device, | |
) | |
if ring_type == "ring_varlen": | |
for i in range(bs): | |
start_idx = new_seqlen_per_rank[i] * sp_rank | |
end_idx = start_idx + new_seqlen_per_rank[i] | |
new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx] | |
new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx] | |
new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx] | |
new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[ | |
i, start_idx:end_idx, : | |
] | |
elif ring_type == "zigzag_ring_varlen": | |
chunk_size = total_effective_seqlen // (2 * sp_degree) | |
for i in range(bs): | |
# Zigzag pattern indices | |
if sp_degree == ring_degree: | |
forward_rank_idx = sp_rank | |
backward_rank_idx = 2 * sp_degree - sp_rank - 1 | |
else: | |
ulysses_offset = ulysses_rank * ring_degree * 2 | |
forward_rank_idx = ring_rank + ulysses_offset | |
backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset | |
# Calculate start and end indices for the forward and backward zigzag | |
start_idx_fwd = forward_rank_idx * chunk_size[i] | |
end_idx_fwd = start_idx_fwd + chunk_size[i] | |
start_idx_bwd = backward_rank_idx * chunk_size[i] | |
end_idx_bwd = start_idx_bwd + chunk_size[i] | |
# Fill new tensors with zigzag data | |
new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd] | |
new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[ | |
i, start_idx_bwd:end_idx_bwd | |
] | |
new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd] | |
new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[ | |
i, start_idx_bwd:end_idx_bwd | |
] | |
new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd] | |
new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd] | |
new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :] | |
new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[ | |
i, start_idx_bwd:end_idx_bwd, : | |
] | |
else: | |
raise ValueError(f"Invalid ring_type: {ring_type}") | |
else: | |
global_seq_len = global_attention_mask.shape[-1] | |
seq_len_sharded = global_seq_len // sp_degree | |
start_idx_reshard = seq_len_sharded * sp_rank | |
end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len | |
new_attention_mask = torch.narrow( | |
global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard | |
) | |
new_position_ids = torch.narrow( | |
global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard | |
) | |
new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard) | |
new_inputs_embeds = torch.narrow( | |
global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard | |
) | |
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels | |
device = inputs_embeds.device | |
batch_size = inputs_embeds.shape[0] | |
seqlens = [attention_mask[k].sum().item() for k in range(batch_size)] | |
# Pack all sequences together | |
inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)] | |
attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)] | |
position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)] | |
labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)] | |
# Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called | |
inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device)) | |
attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device)) | |
position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device)) | |
labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device)) | |
# Mask the first token of each sequence to avoid contamination | |
for label in labels_p: | |
label[0] = IGNORE_INDEX | |
# Batch the data | |
inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0) | |
attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0) | |
position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0) | |
labels_p = torch.cat(labels_p, dim=0).unsqueeze(0) | |
if hasattr( | |
self, "pad_to_multiple_of" | |
): # related to quantization, please refer to ModelArguments for more information. | |
assert len(labels_p.shape) == 2 | |
batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1] | |
hidden_size = inputs_embeds_p.shape[-1] | |
if max_length % self.pad_to_multiple_of != 0: | |
max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of | |
difference = max_length - cur_length | |
inputs_embeds_p = torch.cat( | |
( | |
inputs_embeds_p, | |
torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p), | |
), | |
dim=1, | |
) | |
labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1) | |
attention_mask_p = torch.cat( | |
( | |
attention_mask_p, | |
torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p), | |
), | |
dim=1, | |
) | |
position_ids_p = torch.cat( | |
(position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1 | |
) | |
return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p | |
def get_xgr_logits_processor(self, response_format: ResponseFormat) -> List[LogitsProcessor]: | |
# Convert response format to logits processor | |
import xgrammar as xgr | |
logging.info("[XGrammar] Compiling grammar for contrained output") | |
if self.grammar_compiler is None: | |
# logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}") | |
self.grammar_compiler = xgr.GrammarCompiler( | |
xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size) | |
) | |
if response_format.type == "json_schema": | |
compiled_grammar = self.grammar_compiler.compile_json_schema( | |
response_format.json_schema.schema_, | |
indent=2, | |
) | |
else: | |
compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar() | |
return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)] | |
def generate( | |
self, | |
input_ids: Optional[torch.FloatTensor] = None, | |
media: Optional[Dict[str, List[torch.Tensor]]] = None, | |
media_config: Dict[str, Dict[str, Any]] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
media_meta: Dict[str, Dict[str, Any]]= None, | |
**generation_kwargs, | |
): | |
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask, media_meta) | |
return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs) | |
def generate_content( | |
self, | |
prompt: Union[str, List], | |
generation_config: Optional[GenerationConfig] = None, | |
response_format: Optional[ResponseFormat] = None, | |
) -> str: | |
# TODO(zhijianl): Support directly taking conversation as input | |
conversation = [{"from": "human", "value": prompt}] | |
# Convert response format to logits processor | |
if response_format: | |
xgr_logits_processor = self.get_xgr_logits_processor(response_format) | |
else: | |
xgr_logits_processor = None | |
# Extract media from the conversation | |
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used) | |
media, media_meta = extract_media(conversation, self.config) | |
# Process media | |
media_config = defaultdict(dict) | |
for name in media: | |
if name == "sound": | |
sounds = process_sounds(media["sound"]).half() | |
media[name] = [sound for sound in sounds] | |
sound_feature_masks = process_sound_masks(media_meta["sound_feature_masks"]).half() | |
media_meta["sound_feature_masks"] = [sound_mask for sound_mask in sound_feature_masks] | |
sound_embed_masks = process_sound_masks(media_meta["sound_embed_masks"]).half() | |
media_meta["sound_embed_masks"] = [sound_mask for sound_mask in sound_embed_masks] | |
else: | |
raise ValueError(f"Unsupported media type: {name}") | |
# Tokenize the conversation | |
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0) | |
# Set up the generation config | |
generation_config = generation_config or self.default_generation_config | |
# Generate the response | |
try: | |
output_ids = self.generate( | |
input_ids=input_ids, | |
media=media, | |
media_config=media_config, | |
media_meta=media_meta, | |
generation_config=generation_config, | |
logits_processor=xgr_logits_processor, # structured generation | |
) | |
except ValueError: | |
if not generation_config.do_sample: | |
raise | |
# FIXME(zhijianl): This is a temporary workaround for the sampling issue | |
logging.warning("Generation failed with sampling, retrying with greedy decoding.") | |
generation_config.do_sample = False | |
output_ids = self.generate( | |
input_ids=input_ids, | |
media=media, | |
media_config=media_config, | |
media_meta=media_meta, | |
generation_config=generation_config, | |
logits_processor=xgr_logits_processor, | |
) | |
# Decode the response | |
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() | |
return response | |
def default_generation_config(self) -> GenerationConfig: | |
generation_config = copy.deepcopy(self.generation_config or GenerationConfig()) | |
if self.tokenizer.eos_token_id is None: | |
raise ValueError("Tokenizer must have an EOS token") | |
if generation_config.max_length == GenerationConfig().max_length: | |
generation_config.max_length = self.tokenizer.model_max_length | |
if generation_config.pad_token_id is None: | |
generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id | |
if generation_config.bos_token_id is None: | |
generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id | |
if generation_config.eos_token_id is None: | |
generation_config.eos_token_id = self.tokenizer.stop_token_ids | |
return generation_config | |