Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
import torch | |
# 4 block | |
import triton | |
import triton.language as tl | |
from triton.language.extra.cuda import libdevice | |
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES | |
"""Calculate the gradient of bias Operator""" | |
"""Input uses per-tensor quantization, and should be transposed""" | |
"""Output uses similar to the bias shape""" | |
"""The input can be 2D or 3D, but the calculation is performed in 2D""" | |
# The kernel with 1 load operation and 4 store operation | |
def get_configs_io_block(): | |
configs = [] | |
for nstages in [3, 4, 5]: | |
for block_m in [32, 64, 128]: | |
for block_n in [32, 64, 128]: | |
for nwarps in [4, 8, 16]: | |
configs.append( | |
triton.Config( | |
{"BLOCK_M": block_m, "BLOCK_N": block_n}, | |
num_stages=nstages, | |
num_warps=nwarps, | |
) | |
) | |
return configs | |
convert_str_to_fp8 = {"E4M3": torch.float8_e4m3fn, "E5M2": torch.float8_e5m2} | |
def _fp8_trans_grad_bias_kernel( | |
output_scale_ptr, # output | |
input_t_ptr, # input | |
M, | |
N, | |
SN, | |
QB: tl.constexpr, | |
fp8_max, # shape | |
input_stride_0, | |
input_stride_1, # input stride | |
s_output_stride_0, | |
s_output_stride_1, # scale of output stride | |
SCALE_MIN_THRES: tl.constexpr, | |
BLOCK_M: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
BLOCK_SN: tl.constexpr, | |
): # CUDA block size | |
# Block PID | |
pid = tl.program_id(0) | |
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N) | |
pid_dim0 = pid // NUM_BLOCK_N | |
pid_dim1 = pid % NUM_BLOCK_N | |
# pointers | |
input_block_ptr = tl.make_block_ptr( | |
base=input_ptr, | |
shape=(M, N), | |
strides=(input_stride_0, input_stride_1), | |
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N), | |
block_shape=(BLOCK_M, BLOCK_N), | |
order=(1, 0), | |
) | |
input = tl.load(input_block_ptr, boundary_check=(0, 1)) | |
input = input.to(tl.float32) | |
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB)) | |
# Quantize Scale calculation | |
abs_output = tl.abs(output) | |
max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES | |
scale_output = max_val / fp8_max | |
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1)) | |
scale_output = scale_output.to(output_scale_ptr.type.element_ty) | |
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN)) | |
scale_output_ptr = tl.make_block_ptr( | |
base=output_scale_ptr, | |
shape=(M, SN), | |
strides=(s_output_stride_0, s_output_stride_1), | |
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN), | |
block_shape=(BLOCK_M, BLOCK_SN), | |
order=(1, 0), | |
) | |
tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1)) | |
def fp8_quantize_and_transpose(x, QB, fp8type, transpose_output_2d=False, stochastic=False): | |
# Change batched 3D input to 2D | |
batched = False | |
if len(x.shape) == 3: | |
batched = True | |
BS = x.shape[0] | |
x = x.reshape(-1, x.shape[-1]) | |
# defining the input and output tensor | |
M, N = x.shape | |
SN = N // QB | |
fp8type = convert_str_to_fp8[fp8type] | |
s_y = torch.empty((M, SN), dtype=torch.float32, device=x.device) | |
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value | |
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) | |
_fp8_quantize_and_transpose_kernel[grid]( | |
s_y, | |
x, | |
M, | |
N, | |
SN, | |
QB, | |
fp8MaxValue, | |
x.stride(0), | |
x.stride(1), | |
s_y.stride(0), | |
s_y.stride(1), | |
SCALE_MIN_THRES=SCALE_MIN_THRES, | |
) | |
s_y_max = s_y.max() | |
qy, s_y_max, qy_t = fp8_division_transpose( | |
x, QB, fp8type, s_y_max, stochastic=stochastic | |
) # Stochastic Rounding happens here | |
# Recover 2D to 3D | |
if batched: | |
qy = qy.reshape(BS, -1, qy.shape[-1]) | |
if not transpose_output_2d: | |
qy_t = qy_t.reshape(BS, -1, qy_t.shape[-1]) | |
return qy, s_y_max, qy_t # y_t is expected to be 2D tensor | |
# I change the dtype of both the input tensor and the output tensor. I use torch.float32, torch.float16, and torch.fp8 | |
configs = [] | |
for SL in [8192]: | |
configs.append( | |
triton.testing.Benchmark( # test different matrix size influence | |
x_names=["CDIM"], | |
x_vals=[1024, 2048, 4096, 8192], | |
line_arg="provider", | |
line_vals=["triton", "torch"], | |
line_names=["triton", "torch"], | |
styles=[("blue", "-"), ("green", "-")], | |
ylabel="time-cost", | |
plot_name=f"FP8gelu<SL={SL}>", | |
args={"BS": 4, "SL": SL, "QB": 16, "fp8type": torch.float8_e4m3fn, "mode": "time-consuming"}, | |
) | |
) | |
def bench_load_store( | |
BS, SL, CDIM, QB, fp8type, provider, mode="forward" | |
): # I only use triton as the provider, and mode when benchmarking | |
# create data | |
x = torch.randn(BS, SL, CDIM).cuda() | |
_qx = x.reshape(BS, SL, CDIM // QB, QB) | |
sx = _qx.abs().amax(dim=(3)) / FP8_MAX_VALUE[fp8type] | |
sx = sx.to(torch.bfloat16) | |
_qx = (_qx / sx.unsqueeze(3)).to(fp8type) | |
qx = _qx.reshape(BS, SL, CDIM) | |
quantiles = [0.5, 0.2, 0.8] | |
# utility functions | |
if provider == "triton": | |
def y_fwd(): | |
fp8_quantize_and_transpose(qx, sx, QB) | |
if provider == "torch": | |
torch_gelu = torch.nn.SiLU() | |
def y_fwd(): | |
return torch_gelu(x) | |
# forward pass | |
if mode == "time-consuming": | |
convert_func = lambda ms: ms | |
ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100) | |
# backward pass | |
if mode == "gbps": | |
convert_func = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6 | |
ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100) | |
return convert_func(ms), convert_func(max_ms), convert_func(min_ms) | |
def validity_check(BS, SL, CDIM, QB, fp8type=torch.float8_e4m3fn): | |
# create data | |
x = torch.randn(BS * SL, CDIM).cuda() | |
# torch result | |
# triton result | |
x_triton, s_triton, x_triton_t = fp8_quantize_and_transpose(x, QB, "E4M3") | |
_x_triton = x_triton.reshape(BS * SL, CDIM // QB, QB) | |
_x_triton = _x_triton.to(torch.float32) | |
s_triton = s_triton.unsqueeze(2) | |
output_triton = (_x_triton * s_triton).reshape(BS * SL, CDIM) | |
import IPython | |
IPython.embed() | |
if __name__ == "__main__": | |
torch.manual_seed(0) | |
torch.set_printoptions(precision=8, linewidth=1600, sci_mode=False, edgeitems=3) | |
validity_check(BS=4, SL=256, CDIM=512, QB=16, fp8type=torch.float8_e4m3fn) | |
bench_load_store.run(save_path=f"result/time/multi_quantize_block_quantize/BLSZ=64", print_data=True) | |