Spaces:
Sleeping
Sleeping
File size: 5,561 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 b4026e6 251086d a9c7401 f689a87 71ec4a8 8092b5a 71ec4a8 fa025b1 bf0b824 df306bb bf0b824 df306bb 7fcff87 bf0b824 7fcff87 bf0b824 0efa70b 7fcff87 bf0b824 7fcff87 bf0b824 7fcff87 bf0b824 7fcff87 bf0b824 0efa70b fa025b1 0efa70b bf0b824 fa025b1 bf0b824 fa025b1 0efa70b bf0b824 fa025b1 0efa70b fa025b1 0efa70b fa025b1 251086d 71ec4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
# Function to call the Together AI model
def call_ai_model(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Function to get performance data from AI
def get_performance_data(conditions):
all_message = (
f"Provide the expected sports performance score at conditions: "
f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, "
f"Wind Speed {conditions['wind_speed']} km/h, UV Index {conditions['uv_index']}, "
f"Air Quality Index {conditions['air_quality_index']}, Precipitation {conditions['precipitation']} mm, "
f"Atmospheric Pressure {conditions['atmospheric_pressure']} hPa."
)
response = call_ai_model(all_message)
generated_text = ""
for line in response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:] # Strip "data: " prefix
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
generated_text += delta["content"]
except json.JSONDecodeError:
continue
# Example: Replace with actual data from API
performance_scores = [75, 80, 70, 85, 78, 72, 82] # Replace with actual data from API
return performance_scores
# Streamlit app layout
st.title("Climate Impact on Sports Performance")
st.write("Analyze and visualize the impact of climate conditions on sports performance.")
# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
# Button to generate predictions
if st.button("Generate Prediction"):
conditions = {
"temperature": temperature,
"humidity": humidity,
"wind_speed": wind_speed,
"uv_index": uv_index,
"air_quality_index": air_quality_index,
"precipitation": precipitation,
"atmospheric_pressure": atmospheric_pressure
}
try:
with st.spinner("Generating predictions..."):
# Call AI model to get qualitative analysis
qualitative_analysis = (
f"Assess the impact on sports performance at conditions: "
f"Temperature {temperature}°C, Humidity {humidity}%, "
f"Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
f"Atmospheric Pressure {atmospheric_pressure} hPa."
)
qualitative_result = call_ai_model(qualitative_analysis)
# Get performance score for specified conditions
performance_scores = get_performance_data(conditions)
st.success("Predictions generated.")
# Display qualitative analysis
st.subheader("Qualitative Analysis")
st.write(qualitative_result)
# Display performance score
st.subheader("Performance Score")
st.write(f"Predicted Performance Scores: {performance_scores}")
# Plotting the data
st.subheader("Performance Score vs Climate Conditions")
# Define climate conditions for plotting
climate_conditions = list(conditions.keys())
climate_values = list(conditions.values())
# Plotting performance score against climate conditions
fig, ax = plt.subplots()
ax.plot(climate_conditions, performance_scores, marker='o', linestyle='-', color='b')
ax.set_xlabel('Climate Conditions')
ax.set_ylabel('Performance Score')
ax.set_title('Performance Score vs Climate Conditions')
ax.grid(True)
st.pyplot(fig)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
|