Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
import json | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Function to call the Together AI model | |
def call_ai_model(all_message): | |
url = "https://api.together.xyz/v1/chat/completions" | |
payload = { | |
"model": "NousResearch/Nous-Hermes-2-Yi-34B", | |
"temperature": 1.05, | |
"top_p": 0.9, | |
"top_k": 50, | |
"repetition_penalty": 1, | |
"n": 1, | |
"messages": [{"role": "user", "content": all_message}], | |
"stream_tokens": True, | |
} | |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') | |
if TOGETHER_API_KEY is None: | |
raise ValueError("TOGETHER_API_KEY environment variable not set.") | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"Authorization": f"Bearer {TOGETHER_API_KEY}", | |
} | |
response = requests.post(url, json=payload, headers=headers, stream=True) | |
response.raise_for_status() # Ensure HTTP request was successful | |
return response | |
# Function to get performance data from AI | |
def get_performance_data(conditions): | |
all_message = ( | |
f"Provide the expected sports performance score at conditions: " | |
f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, " | |
f"Wind Speed {conditions['wind_speed']} km/h, UV Index {conditions['uv_index']}, " | |
f"Air Quality Index {conditions['air_quality_index']}, Precipitation {conditions['precipitation']} mm, " | |
f"Atmospheric Pressure {conditions['atmospheric_pressure']} hPa." | |
) | |
response = call_ai_model(all_message) | |
generated_text = "" | |
for line in response.iter_lines(): | |
if line: | |
line_content = line.decode('utf-8') | |
if line_content.startswith("data: "): | |
line_content = line_content[6:] # Strip "data: " prefix | |
try: | |
json_data = json.loads(line_content) | |
if "choices" in json_data: | |
delta = json_data["choices"][0]["delta"] | |
if "content" in delta: | |
generated_text += delta["content"] | |
except json.JSONDecodeError: | |
continue | |
# Example: Replace with actual data from API | |
performance_scores = [75, 80, 70, 85, 78, 72, 82] # Replace with actual data from API | |
return performance_scores | |
# Streamlit app layout | |
st.title("Climate Impact on Sports Performance") | |
st.write("Analyze and visualize the impact of climate conditions on sports performance.") | |
# Inputs for climate conditions | |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25) | |
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50) | |
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0) | |
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5) | |
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100) | |
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0) | |
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013) | |
# Button to generate predictions | |
if st.button("Generate Prediction"): | |
conditions = { | |
"temperature": temperature, | |
"humidity": humidity, | |
"wind_speed": wind_speed, | |
"uv_index": uv_index, | |
"air_quality_index": air_quality_index, | |
"precipitation": precipitation, | |
"atmospheric_pressure": atmospheric_pressure | |
} | |
try: | |
with st.spinner("Generating predictions..."): | |
# Call AI model to get qualitative analysis | |
qualitative_analysis = ( | |
f"Assess the impact on sports performance at conditions: " | |
f"Temperature {temperature}°C, Humidity {humidity}%, " | |
f"Wind Speed {wind_speed} km/h, UV Index {uv_index}, " | |
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, " | |
f"Atmospheric Pressure {atmospheric_pressure} hPa." | |
) | |
qualitative_result = call_ai_model(qualitative_analysis) | |
# Get performance score for specified conditions | |
performance_scores = get_performance_data(conditions) | |
st.success("Predictions generated.") | |
# Display qualitative analysis | |
st.subheader("Qualitative Analysis") | |
st.write(qualitative_result) | |
# Display performance score | |
st.subheader("Performance Score") | |
st.write(f"Predicted Performance Scores: {performance_scores}") | |
# Plotting the data | |
st.subheader("Performance Score vs Climate Conditions") | |
# Define climate conditions for plotting | |
climate_conditions = list(conditions.keys()) | |
climate_values = list(conditions.values()) | |
# Plotting performance score against climate conditions | |
fig, ax = plt.subplots() | |
ax.plot(climate_conditions, performance_scores, marker='o', linestyle='-', color='b') | |
ax.set_xlabel('Climate Conditions') | |
ax.set_ylabel('Performance Score') | |
ax.set_title('Performance Score vs Climate Conditions') | |
ax.grid(True) | |
st.pyplot(fig) | |
except ValueError as ve: | |
st.error(f"Configuration error: {ve}") | |
except requests.exceptions.RequestException as re: | |
st.error(f"Request error: {re}") | |
except Exception as e: | |
st.error(f"An unexpected error occurred: {e}") | |