|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Miscellaneous utility classes and functions.""" |
|
from collections import namedtuple |
|
import time |
|
import ctypes |
|
import fnmatch |
|
import importlib |
|
import inspect |
|
import numpy as np |
|
import json |
|
import os |
|
import shutil |
|
import sys |
|
import types |
|
import io |
|
import pickle |
|
import re |
|
|
|
import html |
|
import hashlib |
|
import glob |
|
import tempfile |
|
import urllib |
|
import urllib.request |
|
import uuid |
|
import boto3 |
|
import threading |
|
from contextlib import ContextDecorator |
|
from contextlib import contextmanager, nullcontext |
|
|
|
from distutils.util import strtobool |
|
from typing import Any, List, Tuple, Union |
|
import importlib |
|
from loguru import logger |
|
|
|
import torch |
|
import psutil |
|
import subprocess |
|
|
|
import random |
|
import string |
|
import pdb |
|
|
|
|
|
|
|
|
|
|
|
class EasyDict(dict): |
|
"""Convenience class that behaves like a dict but allows access with the attribute syntax.""" |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
try: |
|
return self[name] |
|
except KeyError: |
|
raise AttributeError(name) |
|
|
|
def __setattr__(self, name: str, value: Any) -> None: |
|
self[name] = value |
|
|
|
def __delattr__(self, name: str) -> None: |
|
del self[name] |
|
|
|
|
|
class Logger(object): |
|
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file.""" |
|
|
|
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True): |
|
self.file = None |
|
|
|
if file_name is not None: |
|
self.file = open(file_name, file_mode) |
|
|
|
self.should_flush = should_flush |
|
self.stdout = sys.stdout |
|
self.stderr = sys.stderr |
|
|
|
sys.stdout = self |
|
sys.stderr = self |
|
|
|
def __enter__(self) -> "Logger": |
|
return self |
|
|
|
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: |
|
self.close() |
|
|
|
def write(self, text: Union[str, bytes]) -> None: |
|
"""Write text to stdout (and a file) and optionally flush.""" |
|
if isinstance(text, bytes): |
|
text = text.decode() |
|
if len(text) == 0: |
|
return |
|
|
|
if self.file is not None: |
|
self.file.write(text) |
|
|
|
self.stdout.write(text) |
|
|
|
if self.should_flush: |
|
self.flush() |
|
|
|
def flush(self) -> None: |
|
"""Flush written text to both stdout and a file, if open.""" |
|
if self.file is not None: |
|
self.file.flush() |
|
|
|
self.stdout.flush() |
|
|
|
def close(self) -> None: |
|
"""Flush, close possible files, and remove stdout/stderr mirroring.""" |
|
self.flush() |
|
|
|
|
|
if sys.stdout is self: |
|
sys.stdout = self.stdout |
|
if sys.stderr is self: |
|
sys.stderr = self.stderr |
|
|
|
if self.file is not None: |
|
self.file.close() |
|
self.file = None |
|
|
|
|
|
|
|
|
|
|
|
_dnnlib_cache_dir = None |
|
|
|
|
|
def set_cache_dir(path: str) -> None: |
|
global _dnnlib_cache_dir |
|
_dnnlib_cache_dir = path |
|
|
|
|
|
def make_cache_dir_path(*paths: str) -> str: |
|
if _dnnlib_cache_dir is not None: |
|
return os.path.join(_dnnlib_cache_dir, *paths) |
|
if 'DNNLIB_CACHE_DIR' in os.environ: |
|
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths) |
|
if 'HOME' in os.environ: |
|
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths) |
|
if 'USERPROFILE' in os.environ: |
|
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths) |
|
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def format_time(seconds: Union[int, float]) -> str: |
|
"""Convert the seconds to human readable string with days, hours, minutes and seconds.""" |
|
s = int(np.rint(seconds)) |
|
|
|
if s < 60: |
|
return "{0}s".format(s) |
|
elif s < 60 * 60: |
|
return "{0}m {1:02}s".format(s // 60, s % 60) |
|
elif s < 24 * 60 * 60: |
|
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60) |
|
else: |
|
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60) |
|
|
|
|
|
def format_time_brief(seconds: Union[int, float]) -> str: |
|
"""Convert the seconds to human readable string with days, hours, minutes and seconds.""" |
|
s = int(np.rint(seconds)) |
|
|
|
if s < 60: |
|
return "{0}s".format(s) |
|
elif s < 60 * 60: |
|
return "{0}m {1:02}s".format(s // 60, s % 60) |
|
elif s < 24 * 60 * 60: |
|
return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60) |
|
else: |
|
return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24) |
|
|
|
|
|
def ask_yes_no(question: str) -> bool: |
|
"""Ask the user the question until the user inputs a valid answer.""" |
|
while True: |
|
try: |
|
print("{0} [y/n]".format(question)) |
|
return strtobool(input().lower()) |
|
except ValueError: |
|
pass |
|
|
|
|
|
def tuple_product(t: Tuple) -> Any: |
|
"""Calculate the product of the tuple elements.""" |
|
result = 1 |
|
|
|
for v in t: |
|
result *= v |
|
|
|
return result |
|
|
|
|
|
_str_to_ctype = { |
|
"uint8": ctypes.c_ubyte, |
|
"uint16": ctypes.c_uint16, |
|
"uint32": ctypes.c_uint32, |
|
"uint64": ctypes.c_uint64, |
|
"int8": ctypes.c_byte, |
|
"int16": ctypes.c_int16, |
|
"int32": ctypes.c_int32, |
|
"int64": ctypes.c_int64, |
|
"float32": ctypes.c_float, |
|
"float64": ctypes.c_double |
|
} |
|
|
|
|
|
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]: |
|
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes.""" |
|
type_str = None |
|
|
|
if isinstance(type_obj, str): |
|
type_str = type_obj |
|
elif hasattr(type_obj, "__name__"): |
|
type_str = type_obj.__name__ |
|
elif hasattr(type_obj, "name"): |
|
type_str = type_obj.name |
|
else: |
|
raise RuntimeError("Cannot infer type name from input") |
|
|
|
assert type_str in _str_to_ctype.keys() |
|
|
|
my_dtype = np.dtype(type_str) |
|
my_ctype = _str_to_ctype[type_str] |
|
|
|
assert my_dtype.itemsize == ctypes.sizeof(my_ctype) |
|
|
|
return my_dtype, my_ctype |
|
|
|
|
|
def is_pickleable(obj: Any) -> bool: |
|
try: |
|
with io.BytesIO() as stream: |
|
pickle.dump(obj, stream) |
|
return True |
|
except: |
|
return False |
|
|
|
|
|
|
|
|
|
|
|
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]: |
|
"""Searches for the underlying module behind the name to some python object. |
|
Returns the module and the object name (original name with module part removed).""" |
|
|
|
|
|
obj_name = re.sub("^np.", "numpy.", obj_name) |
|
obj_name = re.sub("^tf.", "tensorflow.", obj_name) |
|
|
|
|
|
parts = obj_name.split(".") |
|
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)] |
|
|
|
|
|
for module_name, local_obj_name in name_pairs: |
|
try: |
|
module = importlib.import_module(module_name) |
|
get_obj_from_module(module, local_obj_name) |
|
return module, local_obj_name |
|
except: |
|
pass |
|
|
|
|
|
for module_name, _local_obj_name in name_pairs: |
|
try: |
|
importlib.import_module(module_name) |
|
except ImportError: |
|
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"): |
|
raise |
|
|
|
|
|
for module_name, local_obj_name in name_pairs: |
|
try: |
|
module = importlib.import_module(module_name) |
|
get_obj_from_module(module, local_obj_name) |
|
except ImportError: |
|
pass |
|
|
|
|
|
raise ImportError(obj_name) |
|
|
|
|
|
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any: |
|
"""Traverses the object name and returns the last (rightmost) python object.""" |
|
if obj_name == '': |
|
return module |
|
obj = module |
|
for part in obj_name.split("."): |
|
obj = getattr(obj, part) |
|
return obj |
|
|
|
|
|
def get_obj_by_name(name: str) -> Any: |
|
"""Finds the python object with the given name.""" |
|
module, obj_name = get_module_from_obj_name(name) |
|
return get_obj_from_module(module, obj_name) |
|
|
|
|
|
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any: |
|
"""Finds the python object with the given name and calls it as a function.""" |
|
assert func_name is not None |
|
func_obj = get_obj_by_name(func_name) |
|
assert callable(func_obj) |
|
return func_obj(*args, **kwargs) |
|
|
|
|
|
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any: |
|
"""Finds the python class with the given name and constructs it with the given arguments.""" |
|
return call_func_by_name(*args, func_name=class_name, **kwargs) |
|
|
|
|
|
def get_module_dir_by_obj_name(obj_name: str) -> str: |
|
"""Get the directory path of the module containing the given object name.""" |
|
module, _ = get_module_from_obj_name(obj_name) |
|
return os.path.dirname(inspect.getfile(module)) |
|
|
|
|
|
def is_top_level_function(obj: Any) -> bool: |
|
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'.""" |
|
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__ |
|
|
|
|
|
def get_top_level_function_name(obj: Any) -> str: |
|
"""Return the fully-qualified name of a top-level function.""" |
|
assert is_top_level_function(obj) |
|
module = obj.__module__ |
|
if module == '__main__': |
|
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0] |
|
return module + "." + obj.__name__ |
|
|
|
|
|
|
|
|
|
|
|
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]: |
|
"""List all files recursively in a given directory while ignoring given file and directory names. |
|
Returns list of tuples containing both absolute and relative paths.""" |
|
assert os.path.isdir(dir_path) |
|
base_name = os.path.basename(os.path.normpath(dir_path)) |
|
|
|
if ignores is None: |
|
ignores = [] |
|
|
|
result = [] |
|
|
|
for root, dirs, files in os.walk(dir_path, topdown=True): |
|
for ignore_ in ignores: |
|
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)] |
|
|
|
|
|
for d in dirs_to_remove: |
|
dirs.remove(d) |
|
|
|
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)] |
|
|
|
absolute_paths = [os.path.join(root, f) for f in files] |
|
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths] |
|
|
|
if add_base_to_relative: |
|
relative_paths = [os.path.join(base_name, p) for p in relative_paths] |
|
|
|
assert len(absolute_paths) == len(relative_paths) |
|
result += zip(absolute_paths, relative_paths) |
|
|
|
return result |
|
|
|
|
|
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None: |
|
"""Takes in a list of tuples of (src, dst) paths and copies files. |
|
Will create all necessary directories.""" |
|
for file in files: |
|
target_dir_name = os.path.dirname(file[1]) |
|
|
|
|
|
if not os.path.exists(target_dir_name): |
|
os.makedirs(target_dir_name) |
|
|
|
shutil.copyfile(file[0], file[1]) |
|
|
|
|
|
|
|
|
|
|
|
def is_url(obj: Any, allow_file_urls: bool = False) -> bool: |
|
"""Determine whether the given object is a valid URL string.""" |
|
if not isinstance(obj, str) or not "://" in obj: |
|
return False |
|
if allow_file_urls and obj.startswith('file://'): |
|
return True |
|
try: |
|
res = requests.compat.urlparse(obj) |
|
if not res.scheme or not res.netloc or not "." in res.netloc: |
|
return False |
|
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/")) |
|
if not res.scheme or not res.netloc or not "." in res.netloc: |
|
return False |
|
except: |
|
return False |
|
return True |
|
|
|
|
|
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any: |
|
"""Download the given URL and return a binary-mode file object to access the data.""" |
|
assert num_attempts >= 1 |
|
assert not (return_filename and (not cache)) |
|
|
|
|
|
if not re.match('^[a-z]+://', url): |
|
return url if return_filename else open(url, "rb") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if url.startswith('file://'): |
|
filename = urllib.parse.urlparse(url).path |
|
if re.match(r'^/[a-zA-Z]:', filename): |
|
filename = filename[1:] |
|
return filename if return_filename else open(filename, "rb") |
|
|
|
assert is_url(url) |
|
|
|
|
|
if cache_dir is None: |
|
cache_dir = make_cache_dir_path('downloads') |
|
|
|
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest() |
|
if cache: |
|
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*")) |
|
if len(cache_files) == 1: |
|
filename = cache_files[0] |
|
return filename if return_filename else open(filename, "rb") |
|
|
|
|
|
url_name = None |
|
url_data = None |
|
with requests.Session() as session: |
|
if verbose: |
|
print("Downloading %s ..." % url, end="", flush=True) |
|
for attempts_left in reversed(range(num_attempts)): |
|
try: |
|
with session.get(url) as res: |
|
res.raise_for_status() |
|
if len(res.content) == 0: |
|
raise IOError("No data received") |
|
|
|
if len(res.content) < 8192: |
|
content_str = res.content.decode("utf-8") |
|
if "download_warning" in res.headers.get("Set-Cookie", ""): |
|
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link] |
|
if len(links) == 1: |
|
url = requests.compat.urljoin(url, links[0]) |
|
raise IOError("Google Drive virus checker nag") |
|
if "Google Drive - Quota exceeded" in content_str: |
|
raise IOError("Google Drive download quota exceeded -- please try again later") |
|
|
|
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", "")) |
|
url_name = match[1] if match else url |
|
url_data = res.content |
|
if verbose: |
|
print(" done") |
|
break |
|
except KeyboardInterrupt: |
|
raise |
|
except: |
|
if not attempts_left: |
|
if verbose: |
|
print(" failed") |
|
raise |
|
if verbose: |
|
print(".", end="", flush=True) |
|
|
|
|
|
if cache: |
|
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name) |
|
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name) |
|
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name) |
|
os.makedirs(cache_dir, exist_ok=True) |
|
with open(temp_file, "wb") as f: |
|
f.write(url_data) |
|
os.replace(temp_file, cache_file) |
|
if return_filename: |
|
return cache_file |
|
|
|
|
|
assert not return_filename |
|
return io.BytesIO(url_data) |
|
|
|
|
|
|
|
def import_class(model_str): |
|
from torch_utils.dist_utils import is_rank0 |
|
if is_rank0(): |
|
logger.info('import: {}', model_str) |
|
p, m = model_str.rsplit('.', 1) |
|
mod = importlib.import_module(p) |
|
Model = getattr(mod, m) |
|
return Model |
|
|
|
class ScopedTorchProfiler(ContextDecorator): |
|
""" |
|
Marks ranges for both nvtx profiling (with nsys) and torch autograd profiler |
|
""" |
|
__global_counts = {} |
|
enabled=False |
|
|
|
def __init__(self, unique_name: str): |
|
""" |
|
Names must be unique! |
|
""" |
|
ScopedTorchProfiler.__global_counts[unique_name] = 0 |
|
self._name = unique_name |
|
self._autograd_scope = torch.profiler.record_function(unique_name) |
|
|
|
def __enter__(self): |
|
if ScopedTorchProfiler.enabled: |
|
torch.cuda.nvtx.range_push(self._name) |
|
self._autograd_scope.__enter__() |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self._autograd_scope.__exit__(exc_type, exc_value, traceback) |
|
if ScopedTorchProfiler.enabled: |
|
torch.cuda.nvtx.range_pop() |
|
|
|
class TimingsMonitor(): |
|
CUDATimer = namedtuple('CUDATimer', ['start', 'end']) |
|
def __init__(self, device, enabled=True, timing_names:List[str]=[], cuda_timing_names:List[str]=[]): |
|
""" |
|
Usage: |
|
tmonitor = TimingsMonitor(device) |
|
for i in range(n_iter): |
|
# Record arbitrary scopes |
|
with tmonitor.timing_scope('regular_scope_name'): |
|
... |
|
with tmonitor.cuda_timing_scope('nested_scope_name'): |
|
... |
|
with tmonitor.cuda_timing_scope('cuda_scope_name'): |
|
... |
|
tmonitor.record_timing('duration_name', end_time - start_time) |
|
|
|
# Gather timings |
|
tmonitor.record_all_cuda_timings() |
|
tmonitor.update_all_averages() |
|
averages = tmonitor.get_average_timings() |
|
all_timings = tmonitor.get_timings() |
|
|
|
Two types of timers, standard report timing and cuda timings. |
|
Cuda timing supports scoped context manager cuda_event_scope. |
|
Args: |
|
device: device to time on (needed for cuda timers) |
|
# enabled: HACK to only report timings from rank 0, set enabled=(global_rank==0) |
|
timing_names: timings to report optional (will auto add new names) |
|
cuda_timing_names: cuda periods to time optional (will auto add new names) |
|
""" |
|
self.enabled=enabled |
|
self.device = device |
|
|
|
|
|
|
|
self.all_timings_dict = {} |
|
self.avg_meter_dict = {} |
|
|
|
|
|
self.cuda_event_timers = {} |
|
|
|
for k in timing_names: |
|
self.add_new_timing(k) |
|
|
|
for k in cuda_timing_names: |
|
self.add_new_cuda_timing(k) |
|
|
|
|
|
|
|
|
|
def add_new_timing(self, name): |
|
self.avg_meter_dict[name] = AverageMeter() |
|
self.all_timings_dict[name] = None |
|
|
|
def add_new_cuda_timing(self, name): |
|
start_event = torch.cuda.Event(enable_timing=True) |
|
end_event = torch.cuda.Event(enable_timing=True) |
|
self.cuda_event_timers[name] = self.CUDATimer(start=start_event, end=end_event) |
|
self.add_new_timing(name) |
|
|
|
def clear_timings(self): |
|
self.all_timings_dict = {k:None for k in self.all_timings_dict} |
|
|
|
def get_timings(self): |
|
return self.all_timings_dict |
|
|
|
def get_average_timings(self): |
|
return {k:v.avg for k,v in self.avg_meter_dict.items()} |
|
|
|
def update_all_averages(self): |
|
""" |
|
Once per iter, when timings have been finished recording, one should |
|
call update_average_iter to keep running average of timings. |
|
""" |
|
for k,v in self.all_timings_dict.items(): |
|
if v is None: |
|
print("none_timing", k) |
|
continue |
|
self.avg_meter_dict[k].update(v) |
|
|
|
def record_timing(self, name, value): |
|
if name not in self.all_timings_dict: self.add_new_timing(name) |
|
|
|
self.all_timings_dict[name] = value |
|
|
|
def _record_cuda_event_start(self, name): |
|
if name in self.cuda_event_timers: |
|
self.cuda_event_timers[name].start.record( |
|
torch.cuda.current_stream(self.device)) |
|
|
|
def _record_cuda_event_end(self, name): |
|
if name in self.cuda_event_timers: |
|
self.cuda_event_timers[name].end.record( |
|
torch.cuda.current_stream(self.device)) |
|
|
|
@contextmanager |
|
def cuda_timing_scope(self, name, profile=True): |
|
if name not in self.all_timings_dict: self.add_new_cuda_timing(name) |
|
with ScopedTorchProfiler(name) if profile else nullcontext(): |
|
self._record_cuda_event_start(name) |
|
try: |
|
yield |
|
finally: |
|
self._record_cuda_event_end(name) |
|
|
|
@contextmanager |
|
def timing_scope(self, name, profile=True): |
|
if name not in self.all_timings_dict: self.add_new_timing(name) |
|
with ScopedTorchProfiler(name) if profile else nullcontext(): |
|
start_time = time.time() |
|
try: |
|
yield |
|
finally: |
|
self.record_timing(name, time.time()-start_time) |
|
|
|
def record_all_cuda_timings(self): |
|
""" After all the cuda events call this to synchronize and record down the cuda timings. """ |
|
for k, events in self.cuda_event_timers.items(): |
|
with torch.no_grad(): |
|
events.end.synchronize() |
|
|
|
time_elapsed = events.start.elapsed_time(events.end)/1000. |
|
self.all_timings_dict[k] = time_elapsed |
|
|
|
def init_s3(config_file): |
|
config = json.load(open(config_file, 'r')) |
|
s3_client = boto3.client("s3", **config) |
|
return s3_client |
|
|
|
def download_from_s3(file_path, target_path, cfg): |
|
tic = time.time() |
|
s3_client = init_s3(cfg.checkpoint.write_s3_config) |
|
bucket_name = file_path.split('/')[2] |
|
file_key = file_path.split(bucket_name+'/')[-1] |
|
print(bucket_name, file_key) |
|
s3_client.download_file(bucket_name, file_key, target_path) |
|
logger.info(f'finish download from ! s3://{bucket_name}/{file_key} to {target_path} %.1f sec'%( |
|
time.time() - tic)) |
|
|
|
def upload_to_s3(buffer, bucket_name, key, config_dict): |
|
logger.info(f'start upload_to_s3! bucket_name={bucket_name}, key={key}') |
|
tic = time.time() |
|
s3 = boto3.client('s3', **config_dict) |
|
s3.put_object(Bucket=bucket_name, Key=key, Body=buffer.getvalue()) |
|
logger.info(f'finish upload_to_s3! s3://{bucket_name}/{key} %.1f sec'%(time.time() - tic)) |
|
|
|
def write_ckpt_to_s3(cfg, all_model_dict, ckpt_name): |
|
buffer = io.BytesIO() |
|
tic = time.time() |
|
torch.save(all_model_dict, buffer) |
|
|
|
group, name = cfg.outdir.rstrip("/").split("/")[-2:] |
|
key = f"checkpoints/{group}/{name}/ckpt/{ckpt_name}" |
|
bucket_name = cfg.checkpoint.write_s3_bucket |
|
|
|
s3_client = init_s3(cfg.checkpoint.write_s3_config) |
|
|
|
config_dict = json.load(open(cfg.checkpoint.write_s3_config, 'r')) |
|
upload_thread = threading.Thread(target=upload_to_s3, args=(buffer, bucket_name, key, config_dict)) |
|
upload_thread.start() |
|
path = f"s3://{bucket_name}/{key}" |
|
return path |
|
|
|
def upload_file_to_s3(cfg, file_path, key_name=None): |
|
|
|
|
|
tic = time.time() |
|
group, name = cfg.outdir.rstrip("/").split("/")[-2:] |
|
if key_name is None: |
|
key = os.path.basename(file_path) |
|
key = f"checkpoints/{group}/{name}/{key}" |
|
bucket_name = cfg.checkpoint.write_s3_bucket |
|
s3_client = init_s3(cfg.checkpoint.write_s3_config) |
|
|
|
with open(file_path, 'rb') as f: |
|
s3_client.upload_fileobj(f, bucket_name, key) |
|
full_s3_path = f"s3://{bucket_name}/{key}" |
|
logger.info(f'upload_to_s3: {file_path} {full_s3_path} | use time: {time.time()-tic}') |
|
|
|
return full_s3_path |
|
|
|
|
|
def load_from_s3(file_path, cfg, load_fn): |
|
""" |
|
ckpt_path example: |
|
s3://xzeng/checkpoints/2023_0413/vae_kl_5e-1/ckpt/snapshot_epo000163_iter164000.pt |
|
""" |
|
s3_client = init_s3(cfg.checkpoint.write_s3_config) |
|
bucket_name = file_path.split("s3://")[-1].split('/')[0] |
|
key = file_path.split(f'{bucket_name}/')[-1] |
|
|
|
tic = time.time() |
|
for attemp in range(10): |
|
try: |
|
|
|
with io.BytesIO() as buffer: |
|
s3_client.download_fileobj(bucket_name, key, buffer) |
|
buffer.seek(0) |
|
|
|
|
|
|
|
out = load_fn(buffer) |
|
break |
|
except: |
|
logger.info(f"fail to load s3://{bucket_name}/{key} attemp: {attemp}") |
|
from torch_utils.dist_utils import is_rank0 |
|
if is_rank0(): |
|
logger.info(f'loaded {file_path} | use time: {time.time()-tic:.1f} sec') |
|
return out |
|
|
|
def load_torch_dict_from_s3(ckpt_path, cfg): |
|
""" |
|
ckpt_path example: |
|
s3://xzeng/checkpoints/2023_0413/vae_kl_5e-1/ckpt/snapshot_epo000163_iter164000.pt |
|
""" |
|
s3_client = init_s3(cfg.checkpoint.write_s3_config) |
|
bucket_name = ckpt_path.split("s3://")[-1].split('/')[0] |
|
key = ckpt_path.split(f'{bucket_name}/')[-1] |
|
for attemp in range(10): |
|
try: |
|
|
|
with io.BytesIO() as buffer: |
|
s3_client.download_fileobj(bucket_name, key, buffer) |
|
buffer.seek(0) |
|
|
|
|
|
out = torch.load(buffer, map_location=torch.device("cpu")) |
|
break |
|
except: |
|
logger.info(f"fail to load s3://{bucket_name}/{key} attemp: {attemp}") |
|
return out |
|
|
|
def count_parameters_in_M(model): |
|
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 |
|
|
|
def printarr(*arrs, float_width=6, **kwargs): |
|
""" |
|
Print a pretty table giving name, shape, dtype, type, and content information for input tensors or scalars. |
|
|
|
Call like: printarr(my_arr, some_other_arr, maybe_a_scalar). Accepts a variable number of arguments. |
|
|
|
Inputs can be: |
|
- Numpy tensor arrays |
|
- Pytorch tensor arrays |
|
- Jax tensor arrays |
|
- Python ints / floats |
|
- None |
|
|
|
It may also work with other array-like types, but they have not been tested. |
|
|
|
Use the `float_width` option specify the precision to which floating point types are printed. |
|
|
|
Author: Nicholas Sharp (nmwsharp.com) |
|
Canonical source: https://gist.github.com/nmwsharp/54d04af87872a4988809f128e1a1d233 |
|
License: This snippet may be used under an MIT license, and it is also released into the public domain. |
|
Please retain this docstring as a reference. |
|
""" |
|
|
|
frame = inspect.currentframe().f_back |
|
default_name = "[temporary]" |
|
|
|
|
|
def name_from_outer_scope(a): |
|
if a is None: |
|
return '[None]' |
|
name = default_name |
|
for k, v in frame.f_locals.items(): |
|
if v is a: |
|
name = k |
|
break |
|
return name |
|
|
|
def type_strip(type_str): |
|
return type_str.lstrip('<class ').rstrip('>').replace('torch.', '').strip("'") |
|
|
|
def dtype_str(a): |
|
if a is None: |
|
return 'None' |
|
if isinstance(a, int): |
|
return 'int' |
|
if isinstance(a, float): |
|
return 'float' |
|
if isinstance(a, list) and len(a)>0: |
|
return type_strip(str(type(a[0]))) |
|
if hasattr(a, 'dtype'): |
|
return type_strip(str(a.dtype)) |
|
else: |
|
return '' |
|
def shape_str(a): |
|
if a is None: |
|
return 'N/A' |
|
if isinstance(a, int): |
|
return 'scalar' |
|
if isinstance(a, float): |
|
return 'scalar' |
|
if isinstance(a, list): |
|
return f"[{shape_str(a[0]) if len(a)>0 else '?'}]*{len(a)}" |
|
if hasattr(a, 'shape'): |
|
return str(tuple(a.shape)) |
|
else: |
|
return '' |
|
def type_str(a): |
|
return type_strip(str(type(a))) |
|
def device_str(a): |
|
if hasattr(a, 'device'): |
|
device_str = str(a.device) |
|
if len(device_str) < 10: |
|
|
|
return device_str |
|
return "" |
|
def format_float(x): |
|
return f"{x:{float_width}g}" |
|
def minmaxmean_str(a): |
|
if a is None: |
|
return ('N/A', 'N/A', 'N/A', 'N/A') |
|
if isinstance(a, int) or isinstance(a, float): |
|
return (format_float(a),)*4 |
|
|
|
|
|
min_str = "N/A" |
|
try: min_str = format_float(a.min()) |
|
except: pass |
|
max_str = "N/A" |
|
try: max_str = format_float(a.max()) |
|
except: pass |
|
mean_str = "N/A" |
|
try: mean_str = format_float(a.mean()) |
|
except: pass |
|
try: median_str = format_float(a.median()) |
|
except: |
|
try: median_str = format_float(np.median(np.array(a))) |
|
except: median_str = 'N/A' |
|
return (min_str, max_str, mean_str, median_str) |
|
|
|
def get_prop_dict(a,k=None): |
|
minmaxmean = minmaxmean_str(a) |
|
props = { |
|
'name' : name_from_outer_scope(a) if k is None else k, |
|
|
|
'dtype' : dtype_str(a), |
|
'shape' : shape_str(a), |
|
'type' : type_str(a), |
|
'device' : device_str(a), |
|
'min' : minmaxmean[0], |
|
'max' : minmaxmean[1], |
|
'mean' : minmaxmean[2], |
|
'median': minmaxmean[3] |
|
} |
|
return props |
|
|
|
try: |
|
|
|
props = ['name', 'type', 'dtype', 'shape', 'device', 'min', 'max', 'mean', 'median'] |
|
|
|
|
|
str_props = [] |
|
for a in arrs: |
|
str_props.append(get_prop_dict(a)) |
|
for k,a in kwargs.items(): |
|
str_props.append(get_prop_dict(a, k=k)) |
|
|
|
|
|
maxlen = {} |
|
for p in props: maxlen[p] = 0 |
|
for sp in str_props: |
|
for p in props: |
|
maxlen[p] = max(maxlen[p], len(sp[p])) |
|
|
|
|
|
props = [p for p in props if maxlen[p] > 0] |
|
|
|
|
|
header_str = "" |
|
for p in props: |
|
prefix = "" if p == 'name' else " | " |
|
fmt_key = ">" if p == 'name' else "<" |
|
header_str += f"{prefix}{p:{fmt_key}{maxlen[p]}}" |
|
print(header_str) |
|
print("-"*len(header_str)) |
|
|
|
|
|
for strp in str_props: |
|
for p in props: |
|
prefix = "" if p == 'name' else " | " |
|
fmt_key = ">" if p == 'name' else "<" |
|
print(f"{prefix}{strp[p]:{fmt_key}{maxlen[p]}}", end='') |
|
print("") |
|
|
|
finally: |
|
del frame |
|
|
|
def debug_print_all_tensor_sizes(min_tot_size = 0): |
|
import gc |
|
print("---------------------------------------"*3) |
|
for obj in gc.get_objects(): |
|
try: |
|
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): |
|
if np.prod(obj.size())>=min_tot_size: |
|
print(type(obj), obj.size()) |
|
except: |
|
pass |
|
def print_cpu_usage(): |
|
|
|
|
|
cpu_usage = psutil.cpu_percent() |
|
|
|
|
|
memory_usage = psutil.virtual_memory().used |
|
|
|
|
|
memory_usage_str = psutil._common.bytes2human(memory_usage) |
|
|
|
|
|
msg = f"Current CPU usage: {cpu_usage}% | " |
|
msg += f"Current memory usage: {memory_usage_str}" |
|
return msg |
|
|
|
def calmsize(num_bytes): |
|
if math.isnan(num_bytes): |
|
return '' |
|
for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: |
|
if abs(num_bytes) < 1024.0: |
|
return "{:.1f}{}B".format(num_bytes, unit) |
|
num_bytes /= 1024.0 |
|
return "{:.1f}{}B".format(num_bytes, 'Y') |
|
|
|
def readable_size(num_bytes: int) -> str: |
|
return calmsize(num_bytes) |
|
|
|
def get_gpu_memory(): |
|
""" |
|
Get the current GPU memory usage for each device as a dictionary |
|
""" |
|
output = subprocess.check_output(["nvidia-smi", "--query-gpu=memory.used", "--format=csv"]) |
|
output = output.decode("utf-8") |
|
gpu_memory_values = output.split("\n")[1:-1] |
|
gpu_memory_values = [int(x.strip().split()[0]) for x in gpu_memory_values] |
|
gpu_memory = dict(zip(range(len(gpu_memory_values)), gpu_memory_values)) |
|
return gpu_memory |
|
|
|
def get_gpu_util(): |
|
""" |
|
Get the current GPU memory usage for each device as a dictionary |
|
""" |
|
output = subprocess.check_output(["nvidia-smi", "--query-gpu=utilization.gpu", "--format=csv"]) |
|
output = output.decode("utf-8") |
|
gpu_memory_values = output.split("\n")[1:-1] |
|
gpu_memory_values = [int(x.strip().split()[0]) for x in gpu_memory_values] |
|
gpu_util = dict(zip(range(len(gpu_memory_values)), gpu_memory_values)) |
|
return gpu_util |
|
|
|
|
|
def print_gpu_usage(): |
|
useage = get_gpu_memory() |
|
msg = f" | GPU usage: " |
|
for k, v in useage.items(): |
|
msg += f"{k}: {v} MB " |
|
|
|
|
|
|
|
|
|
return msg |
|
|
|
class AverageMeter(object): |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.cnt = 0 |
|
|
|
def update(self, val, n=1): |
|
self.sum += val * n |
|
self.cnt += n |
|
self.avg = self.sum / self.cnt |
|
|
|
|
|
def generate_random_string(length): |
|
|
|
|
|
letters = string.ascii_letters |
|
return ''.join(random.choice(letters) for _ in range(length)) |
|
|
|
|
|
class ForkedPdb(pdb.Pdb): |
|
""" |
|
PDB Subclass for debugging multi-processed code |
|
Suggested in: https://stackoverflow.com/questions/4716533/how-to-attach-debugger-to-a-python-subproccess |
|
""" |
|
def interaction(self, *args, **kwargs): |
|
_stdin = sys.stdin |
|
try: |
|
sys.stdin = open('/dev/stdin') |
|
pdb.Pdb.interaction(self, *args, **kwargs) |
|
finally: |
|
sys.stdin = _stdin |
|
|
|
def check_exist_in_s3(file_path, s3_config): |
|
s3 = init_s3(s3_config) |
|
bucket_name, object_name = s3path_to_bucket_key(file_path) |
|
|
|
try: |
|
s3.head_object(Bucket=bucket_name, Key=object_name) |
|
return 1 |
|
except: |
|
logger.info(f'file not found: s3://{bucket_name}/{object_name}') |
|
return 0 |
|
|
|
def s3path_to_bucket_key(file_path): |
|
bucket_name = file_path.split('/')[2] |
|
object_name = file_path.split(bucket_name + '/')[-1] |
|
return bucket_name, object_name |
|
|
|
def copy_file_to_s3(cfg, file_path_local, file_path_s3): |
|
|
|
|
|
bucket_name, key = s3path_to_bucket_key(file_path_s3) |
|
tic = time.time() |
|
s3_client = init_s3(cfg.checkpoint.write_s3_config) |
|
|
|
|
|
with open(file_path_local, 'rb') as f: |
|
s3_client.upload_fileobj(f, bucket_name, key) |
|
full_s3_path = f"s3://{bucket_name}/{key}" |
|
logger.info(f'copy file: {file_path_local} {full_s3_path} | use time: {time.time()-tic}') |
|
return full_s3_path |