|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "nvidia/OpenReasoning-Nemotron-1.5B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def chat_api(prompt, max_new_tokens=200, temperature=0.7): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
do_sample=True |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
demo = gr.Interface( |
|
fn=chat_api, |
|
inputs=[ |
|
gr.Textbox(label="Prompt", placeholder="Ask me anything..."), |
|
gr.Slider(50, 512, value=200, step=10, label="Max Tokens"), |
|
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") |
|
], |
|
outputs="text", |
|
title="OpenReasoning Nemotron-1.5B API", |
|
description="Public Hugging Face Space that runs NVIDIA's Nemotron-1.5B model." |
|
) |
|
|
|
demo.launch() |