File size: 14,560 Bytes
bdb88e6
 
 
 
926d2ec
905acb6
 
 
2ef0c2a
2e94d15
b25aff8
 
905acb6
 
 
2ef0c2a
905acb6
 
73e9439
905acb6
a4a6abd
6858bb7
 
905acb6
 
a4a6abd
926d2ec
a4a6abd
905acb6
 
 
 
bdb88e6
b25aff8
bdb88e6
6858bb7
 
 
 
b40230a
6858bb7
905acb6
 
 
 
dab83dd
 
905acb6
a4a6abd
926d2ec
905acb6
acfc9dc
905acb6
 
 
 
 
f33a64a
 
 
73e9439
926d2ec
 
 
 
acfc9dc
905acb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45691d2
 
 
 
 
6858bb7
905acb6
45691d2
905acb6
b40230a
 
 
dab83dd
b40230a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45691d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b40230a
 
 
 
 
 
 
 
 
 
 
 
 
905acb6
 
 
45691d2
 
 
 
 
6858bb7
905acb6
45691d2
905acb6
b40230a
 
 
 
 
 
 
 
 
 
 
45691d2
b40230a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45691d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b40230a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905acb6
 
 
 
385646b
 
 
f341af1
905acb6
34d02f1
905acb6
 
 
2ef0c2a
b313d69
905acb6
 
 
 
2ef0c2a
905acb6
 
2ef0c2a
905acb6
696a67d
905acb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6858bb7
905acb6
dab83dd
2ef0c2a
905acb6
4b859d8
b40230a
4b859d8
 
 
 
905acb6
 
 
 
2ef0c2a
905acb6
 
 
 
7722042
bdb88e6
 
3d010db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import random
import uuid
import json
import requests
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    AutoTokenizer,
    AutoModel, 
    AutoImageProcessor,
    TextIteratorStreamer,
)

from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Llama-3.1-Nemotron-Nano-VL-8B-V1
MODEL_ID_M = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
processor_m = AutoImageProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
tokenizer_m = AutoTokenizer.from_pretrained(MODEL_ID_M)
tokenizer_m.pad_token = tokenizer_m.eos_token  # Set pad_token to resolve ValueError
model_m = AutoModel.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()
# Fix AssertionError by setting img_context_token_id
model_m.img_context_token_id = tokenizer_m.convert_tokens_to_ids("<image>")

# Load Space Thinker
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Z,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load coreOCR-7B-050325-preview
MODEL_ID_K = "prithivMLmods/coreOCR-7B-050325-preview"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_K,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                  max_new_tokens: int = 1024,
                  temperature: float = 0.6,
                  top_p: float = 0.9,
                  top_k: int = 50,
                  repetition_penalty: float = 1.2):
    if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
        processor = processor_m
        tokenizer = tokenizer_m
        model = model_m
        if image is None:
            yield "Please upload an image."
            return
        # Construct message with <image> token
        if "<image>" not in text:
            message = f"<image>\n{text}"
        else:
            message = text
        
        # Tokenize the message
        inputs = tokenizer(message, return_tensors="pt").to(device)
        
        # Process image
        image_features = processor(image, return_tensors="pt").to(device)
        
        # Combine inputs
        generation_inputs = {
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"],
            **image_features,
        }
        
        # Create streamer
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        
        # Generation kwargs
        generation_kwargs = {
            **generation_inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        
        # Start generation in a thread
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
        if model_name == "SpaceThinker-3B":
            processor = processor_z
            model = model_z
        else:
            processor = processor_k
            model = model_k
        
        if image is None:
            yield "Please upload an image."
            return
        
        messages = [{
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt_full],
            images=[image],
            return_tensors="pt",
            padding=True,
            truncation=False,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to(device)
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        yield "Invalid model selected."
        return

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                  max_new_tokens: int = 1024,
                  temperature: float = 0.6,
                  top_p: float = 0.9,
                  top_k: int = 50,
                  repetition_penalty: float = 1.2):
    if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
        processor = processor_m
        tokenizer = tokenizer_m
        model = model_m
        if video_path is None:
            yield "Please upload a video."
            return
        frames = downsample_video(video_path)
        # Construct message with multiple <image> tokens
        prompt_parts = ["<image>"] * len(frames) + [text]
        message = " ".join(prompt_parts)
        
        # Tokenize
        inputs = tokenizer(message, return_tensors="pt").to(device)
        
        # Process all frames
        image_features = processor([frame[0] for frame in frames], return_tensors="pt").to(device)
        
        # Combine inputs
        generation_inputs = {
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"],
            **image_features,
        }
        
        # Create streamer
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        
        # Generation kwargs
        generation_kwargs = {
            **generation_inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        
        # Start generation in a thread
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
        if model_name == "SpaceThinker-3B":
            processor = processor_z
            model = model_z
        else:
            processor = processor_k
            model = model_k
        
        if video_path is None:
            yield "Please upload a video."
            return
        
        frames = downsample_video(video_path)
        messages = [
            {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
            {"role": "user", "content": [{"type": "text", "text": text}]}
        ]
        for frame in frames:
            image, timestamp = frame
            messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
            messages[1]["content"].append({"type": "image", "image": image})
        inputs = processor.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
            truncation=False,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to(device)
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        yield "Invalid model selected."
        return

# Define examples for image and video inference
image_examples = [
    ["type out the messy hand-writing as accurately as you can.", "images/1.jpg"],
    ["count the number of birds and explain the scene in detail.", "images/2.jpeg"],
    ["how far is the Goal from the penalty taker in this image?.", "images/3.png"],
    ["approximately how many meters apart are the chair and bookshelf?.", "images/4.png"],
    ["how far is the man in the red hat from the pallet of boxes in feet?.", "images/5.jpg"],
]

video_examples = [
    ["give the highlights of the movie scene video.", "videos/1.mp4"],
    ["explain the advertisement in detail.", "videos/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **VisionScope-R2**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
            model_choice = gr.Radio(
                choices=["Llama-3.1-Nemotron-Nano-VL-8B-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview"],
                label="Select Model",
                value="Llama-3.1-Nemotron-Nano-VL-8B-V1"
            )
            
            gr.Markdown("**Model Info**")
            gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1): structural video captioning model designed to generate high-quality, structural descriptions for video data. It integrates specialized sub-expert models.")
            gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
            gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
            gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
             
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)