Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,560 Bytes
bdb88e6 926d2ec 905acb6 2ef0c2a 2e94d15 b25aff8 905acb6 2ef0c2a 905acb6 73e9439 905acb6 a4a6abd 6858bb7 905acb6 a4a6abd 926d2ec a4a6abd 905acb6 bdb88e6 b25aff8 bdb88e6 6858bb7 b40230a 6858bb7 905acb6 dab83dd 905acb6 a4a6abd 926d2ec 905acb6 acfc9dc 905acb6 f33a64a 73e9439 926d2ec acfc9dc 905acb6 45691d2 6858bb7 905acb6 45691d2 905acb6 b40230a dab83dd b40230a 45691d2 b40230a 905acb6 45691d2 6858bb7 905acb6 45691d2 905acb6 b40230a 45691d2 b40230a 45691d2 b40230a 905acb6 385646b f341af1 905acb6 34d02f1 905acb6 2ef0c2a b313d69 905acb6 2ef0c2a 905acb6 2ef0c2a 905acb6 696a67d 905acb6 6858bb7 905acb6 dab83dd 2ef0c2a 905acb6 4b859d8 b40230a 4b859d8 905acb6 2ef0c2a 905acb6 7722042 bdb88e6 3d010db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
import random
import uuid
import json
import requests
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoTokenizer,
AutoModel,
AutoImageProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Llama-3.1-Nemotron-Nano-VL-8B-V1
MODEL_ID_M = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
processor_m = AutoImageProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
tokenizer_m = AutoTokenizer.from_pretrained(MODEL_ID_M)
tokenizer_m.pad_token = tokenizer_m.eos_token # Set pad_token to resolve ValueError
model_m = AutoModel.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Fix AssertionError by setting img_context_token_id
model_m.img_context_token_id = tokenizer_m.convert_tokens_to_ids("<image>")
# Load Space Thinker
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Z,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load coreOCR-7B-050325-preview
MODEL_ID_K = "prithivMLmods/coreOCR-7B-050325-preview"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_K,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
processor = processor_m
tokenizer = tokenizer_m
model = model_m
if image is None:
yield "Please upload an image."
return
# Construct message with <image> token
if "<image>" not in text:
message = f"<image>\n{text}"
else:
message = text
# Tokenize the message
inputs = tokenizer(message, return_tensors="pt").to(device)
# Process image
image_features = processor(image, return_tensors="pt").to(device)
# Combine inputs
generation_inputs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
**image_features,
}
# Create streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generation kwargs
generation_kwargs = {
**generation_inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in a thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
if model_name == "SpaceThinker-3B":
processor = processor_z
model = model_z
else:
processor = processor_k
model = model_k
if image is None:
yield "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
yield "Invalid model selected."
return
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
processor = processor_m
tokenizer = tokenizer_m
model = model_m
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
# Construct message with multiple <image> tokens
prompt_parts = ["<image>"] * len(frames) + [text]
message = " ".join(prompt_parts)
# Tokenize
inputs = tokenizer(message, return_tensors="pt").to(device)
# Process all frames
image_features = processor([frame[0] for frame in frames], return_tensors="pt").to(device)
# Combine inputs
generation_inputs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
**image_features,
}
# Create streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generation kwargs
generation_kwargs = {
**generation_inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in a thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
if model_name == "SpaceThinker-3B":
processor = processor_z
model = model_z
else:
processor = processor_k
model = model_k
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
yield "Invalid model selected."
return
# Define examples for image and video inference
image_examples = [
["type out the messy hand-writing as accurately as you can.", "images/1.jpg"],
["count the number of birds and explain the scene in detail.", "images/2.jpeg"],
["how far is the Goal from the penalty taker in this image?.", "images/3.png"],
["approximately how many meters apart are the chair and bookshelf?.", "images/4.png"],
["how far is the man in the red hat from the pallet of boxes in feet?.", "images/5.jpg"],
]
video_examples = [
["give the highlights of the movie scene video.", "videos/1.mp4"],
["explain the advertisement in detail.", "videos/2.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **VisionScope-R2**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
model_choice = gr.Radio(
choices=["Llama-3.1-Nemotron-Nano-VL-8B-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview"],
label="Select Model",
value="Llama-3.1-Nemotron-Nano-VL-8B-V1"
)
gr.Markdown("**Model Info**")
gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1): structural video captioning model designed to generate high-quality, structural descriptions for video data. It integrates specialized sub-expert models.")
gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |