File size: 3,021 Bytes
703c654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626e0aa
703c654
 
d9d27f1
703c654
 
 
 
 
 
 
d9d27f1
703c654
 
d9d27f1
703c654
 
d9d27f1
703c654
 
 
 
d9d27f1
 
703c654
 
d9d27f1
703c654
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr

import torch
import io
from PIL import Image
from transformers import (
    AutoImageProcessor,
    AutoTokenizer,
    AutoModelForCausalLM,
)
import numpy as np
model_root = "qihoo360/fg-clip-base"

model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True)
device = model.device
tokenizer = AutoTokenizer.from_pretrained(model_root)
image_processor = AutoImageProcessor.from_pretrained(model_root)

import math
import matplotlib
matplotlib.use('Agg') 
import matplotlib.pyplot as plt

def postprocess_result(probs, labels):
    pro_output = {labels[i]: probs[i] for i in range(len(labels))}

    return pro_output


def Retrieval(image, candidate_labels):
    """
    Takes an image and a comma-separated string of candidate labels,
    and returns the classification scores.
    """
    image_size=224
    image = image.convert("RGB")
    image = image.resize((image_size,image_size))
    image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device)
    walk_short_pos = True

    caption_input = torch.tensor(tokenizer(candidate_labels, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device)

    with torch.no_grad():
        image_feature = model.get_image_features(image_input)
        text_feature = model.get_text_features(caption_input,walk_short_pos=walk_short_pos)
        image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True)
        text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)

        logits_per_image = image_feature @ text_feature.T
        logits_per_image = model.logit_scale.exp() * logits_per_image
        probs = logits_per_image.softmax(dim=1) 
    results = probs[0].tolist()
    return results




def infer(image, candidate_labels):
    candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""]
    fg_probs = Retrieval(image, candidate_labels)
    return postprocess_result(fg_probs,candidate_labels)


with gr.Blocks() as demo:
    gr.Markdown("# FG-CLIP Retrieval")
    gr.Markdown(
        
        "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for retrieval on CPU :"
    )

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil")
            text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
            run_button = gr.Button("Run Retrieval", visible=True)
        with gr.Column():
            fg_output = gr.Label(label="FG-CLIP Output", num_top_classes=11)

            
    examples = [
        
        ["./Landscape.jpg", "red grass, yellow grass, green grass"],
        ["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"],
        
    ]
    gr.Examples(
        examples=examples,
        inputs=[image_input, text_input],
        outputs=fg_output,
        fn=infer,
    )
    run_button.click(fn=infer, inputs=[image_input, text_input], outputs=fg_output)

demo.launch()