File size: 1,347 Bytes
85d3bc8
 
60ba391
85d3bc8
 
 
 
 
 
 
 
 
60ba391
 
 
 
61f4e5e
 
 
 
 
 
85d3bc8
 
7b638ad
 
85d3bc8
 
 
 
 
 
60ba391
85d3bc8
 
 
 
 
 
 
 
 
7b638ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
import pandas as pd
import requests

from src.about import (
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css


def get_evaluation():
    response = requests.get("http://aim100.qinference.com/api/leaderboard/list")
    data_json = response.json()
    df = pd.DataFrame(data_json)
    for col in df.columns:
        df.loc[df[col] == 0, col] = '-'
    df.insert(0, 'No', df.reset_index().index + 1)
    ret = df.drop(columns='nodeSeq').rename(columns={'modelName': 'Model'})
    ret.columns = [x.capitalize() for x in ret.columns]
    return ret


leaderboard = gr.Blocks(css=custom_css)
with leaderboard:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=get_evaluation(),
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")


leaderboard.queue(default_concurrency_limit=40).launch()