Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration | |
from datasets import load_dataset | |
import torch | |
# Load the dataset | |
dataset = load_dataset("pubmed_qa", split="test") | |
# Initialize RAG components | |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") | |
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="default", use_dummy_dataset=True) | |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq") | |
# Function to get the answer to a medical query | |
def get_medical_answer(query): | |
# Encode the query to retrieve relevant documents | |
inputs = tokenizer(query, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
# Retrieve relevant documents | |
docs = retriever(input_ids=input_ids, return_tensors="pt") | |
# Generate the answer from the model | |
generated_ids = model.generate(input_ids=input_ids, context_input_ids=docs["context_input_ids"], | |
context_attention_mask=docs["context_attention_mask"]) | |
# Decode the generated answer | |
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_answer | |
# Streamlit UI | |
st.title("Medical QA Assistant") | |
st.write("Ask any medical question, and I will answer it based on PubMed papers!") | |
# Input text box for queries | |
query = st.text_input("Enter your medical question:") | |
if query: | |
with st.spinner("Searching for the answer..."): | |
answer = get_medical_answer(query) | |
st.write(f"Answer: {answer}") | |