assignment5 / rag_pipeline.py
rahideer's picture
Create rag_pipeline.py
913f5f9 verified
raw
history blame
1.38 kB
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd
from transformers import pipeline
class RAGPipeline:
def __init__(self, dataset_path):
self.embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
self.generator = pipeline("text2text-generation", model="google/flan-t5-base")
self.data = pd.read_csv(dataset_path)
self.documents = self.data['context'].tolist()
self.questions = self.data['question'].tolist()
self.index = self.build_faiss_index()
def build_faiss_index(self):
embeddings = self.embedder.encode(self.documents, convert_to_numpy=True)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
return index
def retrieve(self, query, top_k=5):
query_embedding = self.embedder.encode([query], convert_to_numpy=True)
scores, indices = self.index.search(query_embedding, top_k)
return [self.documents[i] for i in indices[0]]
def generate_answer(self, query):
docs = self.retrieve(query)
context = " ".join(docs)
prompt = f"Answer the following question using the provided context:\nContext: {context}\nQuestion: {query}"
result = self.generator(prompt, max_length=200, do_sample=True)
return result[0]['generated_text']