Spaces:
Sleeping
Sleeping
File size: 5,577 Bytes
0752ecf 98c9504 1c4e9d0 98c9504 0752ecf e9b8d71 98c9504 dc023a9 1c4e9d0 ab4c9ec 1c4e9d0 0752ecf ab4c9ec d954be0 240048f ab4c9ec 240048f eeb0aa9 240048f eeb0aa9 dc023a9 ab4c9ec 0752ecf ab4c9ec dc023a9 240048f d954be0 240048f d954be0 240048f d954be0 051d865 240048f 051d865 dc023a9 d954be0 dc023a9 ab4c9ec 051d865 dc023a9 0752ecf dc023a9 0752ecf ab4c9ec 0752ecf 1c4e9d0 ab4c9ec e9b8d71 ab4c9ec dc023a9 ab4c9ec dc023a9 ab4c9ec dc023a9 ab4c9ec dc023a9 ab4c9ec eeb0aa9 dc023a9 ab4c9ec dc023a9 eeb0aa9 dc023a9 eeb0aa9 dc023a9 eeb0aa9 dc023a9 eeb0aa9 dc023a9 eeb0aa9 dc023a9 eeb0aa9 dc023a9 eeb0aa9 1c4e9d0 051d865 1c4e9d0 dc023a9 1c4e9d0 dc023a9 1c4e9d0 ab4c9ec dc023a9 0752ecf 1c4e9d0 dc023a9 ab4c9ec 1c4e9d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
from PIL import Image, ImageDraw
import requests
from io import BytesIO
import numpy as np
import json
import tempfile
import easyocr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from bs4 import BeautifulSoup
import base64
import re
# ----------------- Initialize OCR -----------------
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
reader = easyocr.Reader(['en'])
# ----------------- HTML Parsing -----------------
from bs4 import BeautifulSoup
from bs4 import BeautifulSoup
def parse_html_to_json(html_file):
"""
Parse HTML content from a Gradio file input or string and produce
words/paragraphs JSON compatible with image OCR output.
"""
# Handle Gradio NamedString, str, or file-like object
html_content = ""
if hasattr(html_file, "read"): # real file
html_content = html_file.read()
if isinstance(html_content, bytes):
html_content = html_content.decode("utf-8")
elif isinstance(html_file, str):
html_content = html_file
else: # Gradio NamedString
html_content = getattr(html_file, "name", str(html_file))
soup = BeautifulSoup(html_content, "html.parser")
words_json = []
paragraphs_json = []
y_offset = 0
line_height = 20
char_width = 10
# iterate over all visible text nodes in the body
body = soup.body
if not body:
body = soup # fallback
# Only consider visible text
for element in body.find_all(text=True):
text = element.strip()
if not text:
continue
# split into words
line_words = text.split()
line_bbox = [0, y_offset, char_width * len(text), y_offset + line_height]
word_entries = []
x_offset = 0
for word in line_words:
word_bbox = [x_offset, y_offset, x_offset + char_width * len(word), y_offset + line_height]
word_entry = {"text": word, "bbox": word_bbox, "confidence": 1.0}
word_entries.append(word_entry)
words_json.append(word_entry)
x_offset += char_width * (len(word) + 1)
paragraphs_json.append({
"text": text,
"bbox": line_bbox,
"words": word_entries
})
y_offset += line_height
output_json = {
"words": words_json,
"paragraphs": paragraphs_json
}
return output_json
# ----------------- Image Loading -----------------
def load_image(image_file, image_url):
if image_file:
return [image_file]
elif image_url:
response = requests.get(image_url)
return [Image.open(BytesIO(response.content)).convert("RGB")]
return []
# ----------------- Main Logic -----------------
def detect_text_combined(image_file, image_url, html_file):
# ----------------- HTML Path -----------------
if html_file:
output_json = parse_html_to_json(html_file)
json_str = json.dumps(output_json, indent=2)
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w")
tmp_file.write(json_str)
tmp_file.close()
annotated_image = None
return annotated_image, json_str, tmp_file.name
# ----------------- Image Path -----------------
images = load_image(image_file, image_url)
if not images:
return None, "No input provided.", None
annotated_image = images[0]
image = annotated_image
results = reader.readtext(np.array(image))
draw = ImageDraw.Draw(image)
words_json = []
for bbox, _, conf in results:
x_coords = [float(point[0]) for point in bbox]
y_coords = [float(point[1]) for point in bbox]
x_min, y_min = min(x_coords), min(y_coords)
x_max, y_max = max(x_coords), max(y_coords)
# Crop word for TrOCR recognition
word_crop = image.crop((x_min, y_min, x_max, y_max))
pixel_values = processor(images=word_crop, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=2)
words_json.append({
"text": text,
"bbox": [x_min, y_min, x_max, y_max],
"confidence": float(conf)
})
paragraphs_json = words_json.copy()
output_json = {
"words": words_json,
"paragraphs": paragraphs_json
}
json_str = json.dumps(output_json, indent=2)
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w")
tmp_file.write(json_str)
tmp_file.close()
return annotated_image, json_str, tmp_file.name
# ----------------- Gradio Interface -----------------
iface = gr.Interface(
fn=detect_text_combined,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Image URL (optional)"),
gr.File(label="Upload HTML File", file_types=[".html", ".htm"])
],
outputs=[
gr.Image(type="pil", label="Annotated Image"),
gr.Textbox(label="JSON Output"),
gr.File(label="Download JSON")
],
title="Combined OCR & HTML Text Bounding Box Extractor",
description="Upload an image, provide an image URL, or upload an HTML file. Outputs word- and paragraph-level bounding boxes in JSON format consistent with image OCR output."
)
if __name__ == "__main__":
iface.launch()
|